MAC 1147 Review # 4 Sequences, Series, Binomial Theorem, and Mathematical Induction Prof. Nicoli-Suco -------------------Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write out the first five terms of the sequence. 1) an = n - 4 A) -16, -12, -8, -4, 0 B) -3, -2, -1, 0, 1 C) -4, -3, -2, -1, 0 D) -1, 0, 1, 2, 3 B) -1, -4, -7, -10, -13 C) 1, 2, 3, 4, 5 D) 5, 8, 11, 14, 17 B 2) an = 3n - 2 A) 1, 4, 7, 10, 13 A 3) an = 4 n A) 1, 4, 16, 64, 256 B) 4, 16, 64, 256, 1024 C) 1, 16, 81, 256, 625 D) 16, 64, 256, 1024, 4096 B 4) an = A) 1 n2 1 2 3 4 5 , , , , 4 9 16 25 36 C) 1, 1 1 1 1 , , , 4 9 16 25 D) 1, 2 3 4 5 , , , 4 9 16 25 B) 1, 1, 1, 1, 1 C) 0, 3 4 15 12 , , , 5 5 17 13 D) 1, 3 15 , 1, ,1 5 17 B) -1, 1, 3, 5, 7 C) -1, -1, 3, -5, 7 B) 1, 1 1 1 1 , , , 2 3 4 5 C n2 - 1 5) an = n2 + 1 A) 0, 1 , 4 13 ,1, 5 12 C 6) an = (-1)n-1 (2n - 3) A) 1, 1, -3, -5, -7 C 1 D) -1, -7, 3, -5, 13 Decide whether the given sequence is finite or infinite. 7) -5, -4, -3, -2 A) Finite B) Infinite A 8) -10, -9, -8, -7, ... A) Infinite B) Finite A Find the first six terms of the sequence. 9) a1 = -6, an = an-1 + 8 A) 2, 10, 18, 26, 34, 42 B) 0, 8, 16, 24, 32, 40 C) -6, 2, 10, 18, 26, 34 D) -6, 8, 16, 24, 32, 40 C 10) a1 = -3, an = 2 · an-1 A) 0, 2, -6, -4, -2, 0 B) -3, -6, -12, -24, -48, -96 C) -3, -6, -4, -2, 0, 2 D) -6, -12, -24, -48, -96, -192 B 11) a1 = 2, a2 = 2; for n A) 2, 2, 4, 6, 8, 10 3, an = an-1 + an-2 B) 2, 2, 4, 4, 6, 6 C) 2, 2, 4, 6, 10, 16 D) 2, 2, 4, 8, 32, 256 B) 8 C) 30 D) 22 B) 162 C) 1080 D) 729 B) 20 C) 10 D) 17 C Evaluate the sum. 4 12) (k2 - 2) k= 1 A) 14 D 6 13) 3k k= 3 A) 19,683 C 14) 5 k=2 (k2 - 5) 2 A) 34 D 2 5 15) i=2 (2i - 2) A) 20 B) 12 C) 16 D) 18 B) 8.44 C) 11.55 D) 1409.97 B) 310 C) 4170 D) 3910 B) 297 C) 1147 D) 451 C) 18 D) -43 C) -15 D) -1 A 16) 5 i=2 9/i A) -2.55 C Use a graphing calculator to evaluate the series. 11 8j2 - 13 17) j =2 A) 2186.67 D 18) 13 k2 - 5k + 7 k=3 A) 1301 D Evaluate the sum using the given information. 19) x1 = -3, x2 = 4, x3 = 3, and x4 = -2 4 2 (- x i - 5) i=1 A) -58 B) -50 A 20) x1 = -4, x2 = -1, x3 = 1, x4 = 3, and x5 = 0 5 (-2xi + 3) i=1 A) 17 B) 5 A Write the series using summation notation. 3 4 5 6 7 + + + + 21) 1·2 2·3 3·4 4·5 5·6 A) 5 i=1 i+2 i(i - 1) B) 5 i=1 i i(i + 1) C) 5 i=1 D 3 i-2 i(i + 1) D) 5 i=1 i+2 i(i + 1) 22) 16 + 26 + 3 6 + 4 6 + . . . 6k A) B) k=0 4 k6 k6 C) k=1 k5 D) k=1 k=1 C Find the common difference for the arithmetic sequence. 23) 2, 3, 4, 5, ... A) 0.01 B) -1 C) 1 D) 3 B) -1 C) -2.6 D) -3 C 24) -9, -10, -11, -12, ... A) -2 B Write the first n terms of the given arithmetic sequence (the value of n is indicated in the question). 25) The first term is 17, and the common difference is 3; n = 5 A) 17, 3, 23, 26, 29 B) 3, 20, 37, 54, 71 C) 17, 20, 23, 26, 29 D) 17, 3, 40, 60, 80 C 26) The first term is -1 + 17, and the common difference is 3; n = 3 A) -1 + 17, 2 + 17, 5 + 17 B) -1 + C) -1 - 17, 2 + 17, 5 + 17 D) 1 + 17, 3 + 17, 2 + 17, 6 + 17, 5 + 17 17 A Find a n and a 6 for the following arithmetic sequence. 27) 4, 10, 16, 22, 28, ... A) an = 2(3n - 1); a6 = 34 B) an = 2n - 6; a6 = 6 C) an = 4(6)n-1 ; a6 = 24 D) an = 6n - 1; a6 = 35 A 28) -1, 1, 3, 5, 7, ... A) an = 3n - 2; a6 = 16 B) an = n + 2; a6 = 8 C) an = 2n - 3; a6 = 9 D) an = -1(2)n-1; a6 = -32 C 29) a1 = -36, d = 5 A) an = -36 - 5(n - 1), a 6 = -61 B) an = -36 + 5n, a6 = -6 C) an = -36 - 5n, a6 = -66 D) an = -36 + 5(n - 1), a 6 = -11 D 4 Find the first term and the common difference for the arithmetic sequence. Round approximations to the nearest hundredth. 30) a 15 = 320, a A) a 1 69 = 1400 = 40, d = 1080 B) a 1 = 1080, d = 20 C) a = -5, d = 4 C) a 1 = 40, d = 20 D) a = -5, d = 132 D) a 1 = 1080, d = 40 C 31) a 7 = 19, a A) a 1 40 = 151 = 132, d = -5 B) a 1 1 1 = 132, d = 4 B 32) S3 = 9, a3 = 5 A) a1 = 1, d = 2 B) a1 = 1, d = 3.33 C) a1 = -9, d = 3.33 D) a1 = -9, d = 2 A Find the nth term of the geometric sequence. 33) a1 = 5, r = 3, n = 4 A) a4 = 3375 5 27 B) a4 = 27 C) a4 = B) a11 = 177,147 C) a11 = -99 B) a4 = 30 C) a4 = 1 30 D) a4 = -30 1 B) a5 = 2048 C) a5 = 1 512 1 D) a5 = 64 D) a4 = 135 D 34) a1 = 3, r = -3, n = 11 A) a11 = -59,049 D) a11 = 531,441 B 1 35) a1 = 1920, r = , n = 4 4 A) a4 = - 1 30 B 36) a1 = 1 1 ,r= ,n=5 2 4 A) a5 = 1 128 C Find a general term an for the geometric sequence. 37) a1 = 4, r = 4 A) an =4( 4)(n-1) B) an = 4 n-1 + 3 C) an = 4(4)n-1 C 5 D) an = 4 + 12(n - 1) 1 38) a1 = , r = 6 3 A) an = 1 n-1 ·6 3 B) an = 1 5 + (n - 1) 3 3 C) an = 1 + 6(n - 1) 3 D) an = 1 n-1 5 + 3 3 A 39) a1 = 8, r = 8 2 A) an = 8 n-1 - 4 n-1 1 B) an = 8 + (n - 1) 2 C) an = 8 · 4 D) an = 8 - 4(n - 1) C Find the first term and the common ratio for the geometric sequence. Round approximations to the nearest hundredth. 40) a2 = 12, a4 = 108 A) a1 = 12, r = 3 B) a1 = 4, r = 0.33 C) a1 = 108, r = 0.33 D) a1 = 4, r = 3 B) a1 = 16, r = 2 C) a1 = 8, r = 2 D) a1 = 256, r = 0.5 D 41) a2 = 64, a5 = 8 A) a1 = 128, r = 0.5 A Use the formula for Sn to find the sum of the first five terms of the geometric sequence. 42) 4, 8, 16, 32, . . . A) 134 B) 124 C) 122 D) 126 B) 682 C) -682 D) -410 B) 1 C) 9 D) 36 B) 120 C) 60 D) 720 B 43) 2, -8, 32, -128, . . . A) 410 A Evaluate the expression. 9! 44) 7! 2! A) 0! D 45) 10 7 A) 1 B 6 8 46) 8 A) 1 B) 2 C) 40,320 D) 0 B) 126 C) 30,240 D) 252 A 47) 10! 5!5! A) 504 D Write the binomial expansion of the expression. 48) (2x + 3)3 A) 4x6 + 6x3 + 729 B) 4x2 + 12x + 9 C) 8x3 + 36x2 + 54x + 27 D) 8x3 + 36x2 + 36x + 27 C 49) 3 1 x+2 3 A) 1 3 2 2 x + x + 4x + 8 9 3 B) 1 3 2 2 x + x + 4x + 8 27 3 C) 1 3 2 2 x + x +8 9 3 D) 1 6 4 3 x + x +8 27 9 B 50) (3x - 2)4 A) -162x4 + 432 x3 + 216x 2 + 192x + 16 B) 81x4 - 216x3 + 216x2 - 96x + 16 C) (9x2 - 6x + 4)4 D) 81x3 - 216x2 + 216x - 96 B 51) (3x - 2)5 A) 243x5 + 240x4 - 720x3 - 720x2 + 240x - 32 B) 243x5 - 810x4 + 1080x3 - 720x2 + 240x - 32 C) (9x2 - 12x + 4)5 D) 243x5 - 162x4 + 108x3 - 72x 2 + 48x - 32 B Write the indicated term of the binomial expansion. 52) (6x + 9)3 ; 3rd term A) 81 B) 2916x C) 972x2 D) 1458x B) -108,864x5 y4 C) -326,592x4 y5 D) 163,296x4 y6 D 53) (3x - 2y)9 ; 6th term A) 163,296x5 y4 C 7 54) (x - 2y)10; 8th term A) -15,360x7 y3 B) 7680x7 y3 C) -15,360x3 y7 D) 7680x3 y8 B) 5120 C) 8000x2 D) 1600x B) 240x C) 192 D) 300x2 C 55) (5x + 4)5 ; 5th term A) 6400x A 56) (5x + 4)3 ; 3rd term A) 960x B Use mathematical induction to prove that the statement is true for every positive integer n. 57) 6 + 12 + 18 + ... + 6n = 3n(n + 1) 58) 12 + 42 + 72 + . . . + (3n - 2)2 = n(6n2 - 3n - 1) 2 59) 1 · 2 + 2 · 3 + 3 · 4 + . . . + n(n + 1) = 60) 1 - 1 2 1- n(n + 1)(n + 2) 3 1 1 1 ... 1= 3 n+1 n+1 8
© Copyright 2026 Paperzz