Research Subject 2 Development of New Inorganic Membranes • Membranes – Ceramic membranes for H2 separation – Ceramic membranes for CO2 separation – Studies address mechanism of permeation • Prediction of permeation properties Research Subject 2 Studies of Membrane Reactors Selective layer Support Membrane preparation Experimental and modeling studies of membrane reactors Steam reforming CH4 + H2O 2CO + 2H2 Ethanol reforming C2H5OH + 3H2O 6H2 + 2CO2 Applications and New Concepts Reforming of Natural Gas • Steam reforming of methane (750-850 oC) CH4 + H2O CO + 3 H2 Feed cleanup Steam reforming HTS H 2O • Water-gas shift (HTS - 350 CO + H2O oC, LTS – 200 CO2 + H2 oC) • Product purification with pressure swing adsorption or cryogenic distillation Shift LTS CH4 Product H2 purification CO2 removal Condensate P. Hacarlioglu, Y. Gu, S. T. Oyam Membrane Reactor Studies: Separator CH4 + H2O CO + 3 H2 BPR Quartz wool Quartz wool MFC MFC MFC MFC Quartz chips Membrane Gas Catalyst bed Quartz chips Quartz liner Temperature controllerPurge gas Ar Ar H2 3-way Catalyst bed chromatograph Quartz liner Ar 3-way MF Furnace Control box Membrane O2 3-way Dense alumina tube Bubble Flowmeter Water Reservoir Liquid pump Dense tube MFC BPR P 4-way CH4 Condenser P Vent Vent Combines reaction and separation Reactor Modeling For a one-dimensional model Tube side: Shell side: dFi dL dF Riperm dL where j 1,2,3 F = molar flow i , j Ri Riperm Riperm Si a ( Pi shell Pi tube ) For a two-dimensional model Tube side: 2C1i 1 C1i D1i 2 r r r Shell side: C1i u 0 1 l C = concentration 2C3i 1 C3i C3i 3i D3i 2 u Rkn 0 3 r r l r Pressure Dependence of MSR CH4 + H2O CO + 3H2 Pressure (atm) 1 5 10 15 20 Flow rate of CH4 (cm3 (NTP) min-1) 10 50 100 150 200 Fractional conversion of CH4 1.0 Temperature: 873 K Top: MR Bottom: PBR 0.8 0.6 1-D model 0.4 0.2 2-D model 0.0 0 5 10 15 Pressure / atm 20 Radial and Axial Profiles of Hydrogen Flow T = 873 K P = 10 atm 0.00030 Concentration of H2 / mol cm -3 0.00030 Concentration of H2 / mol cm -3 T = 873 K P = 1 atm 0.00025 0.00025 0.00020 Membrane 0.00015 0.00010 0.00005 0.00000 dim2.0 1.0 1.5 0.8 en 0.6 gth sio 1.0 nle 0.4 s len ss 0.5 0.2 nles o rad 0.0 0.0 nsi 0.00030 e ius m di 0.00020 0.00015 0.00010 0.00005 0.00000 2.0 Empty tube side Concentration of H2 / mol cm -3 T = 873 K P = 20 atm Bed side 0.00025 0.00020 0.00015 0.00010 0.00005 0.00000 2.0 1.0 dim 1.5 0.8 1.0 0.6 en h sio 0.4 ngt 0.5 e l nle s 0.2 les ss 0.0 0.0 n o i rad ens m ius i d 1.0 dim 1.5 0.8 en 0.6 h sio 1.0 0.4 ngt 0.5 e nle l s 0.2 ss les n 0.0 o rad i 0.0 ens ius m i d When Should a 2-D Model be Used? Criterion: Order Estimation Parameter T = 873 K P = 10 atm 0.00030 Concentration of H2 / mol cm -3 Reaction rate > flow rate ρR 2 Pe uCo > dPL 0.00025 0.00020 0.00015 0.00010 0.00005 0.00000 2.0 dim Gradients expected when: 1.0 1.5 Permeance rate > diffusion rate PΔP > DΔC/r 1.0 en sio nle ss r 0.8 0.6 0.4 0.5 ad 0.0 ius 0.2 0.0 dim s nle io ens gth n s le Order estimation parameter 2 Pe uC PΔP o > 0.01 DΔC/r dPL ρR For our conditions gradients begin when P > 10 atm R = volumetric rate ρ = density u = flow velocity Co = conc P = permeance P = pressure r = radius Pe = Peclet num Operability Level Coefficient (OLC) Conversion enhancement / % hydrogen permeation rate (permeance ) (area ) ( ΔP) = 1/DaPe OLC = = hydrogen formation rate (rate ) ( volume ) 100 MSR, Tsuru et al. 80 60 40 20 Model I MSR, Tong and Matsumura MDR, Lee et al. MSR, Patil et al. EtOHSR, Lim and Oyama MSR, Tong and Matsumura MSR, Hacarlioglu et al. MDR, Irusta et al. MeOHSR, Basile et al. MeOHSR, Lee et al. k1 ( rI Oyama and Lim PCH 4 PH 2O PH22.5 - PH0.25 PCO ) K1 [1 K CH 4 PCH 4 K CO PCO K H 2O PH 2O ]2 Model II Model I Model II rII k1 ( PCH 4 PH 2O - PCO PH 2 K1 0 0.0 0.2 0.4 0.6 0.8 Operability Level Coefficient / OLC • Correlation independent of kinetics • OLC dependent on reaction rates and permeances 3 ) Hollow Fiber Membranes • High surface area/volume ratio • Easily processed • Broad use
© Copyright 2026 Paperzz