Name: _________________________________ Date: __________________ Period: ________ Geometric Proofs โ ๐ด โ โ ๐ด ๐ผ๐ โ ๐ด โ โ ๐ต, . ๐กโ๐๐ โ ๐ต โ โ ๐ด. ๐ผ๐ โ ๐ด โ โ ๐ต ๐๐๐ โ ๐ต โ โ ๐ถ, ๐กโ๐๐ โ ๐ด โ โ ๐ถ. ๐ผ๐ โ ๐ด โ โ ๐ต, . ๐กโ๐๐ ๐โ ๐ต = ๐โ ๐ด. Example 1: Given: โ A and โ B are complementary, โ A โ โ C Prove: โ C and โ B are complementary Statements: 1. โ A and โ B are complementary 2. mโ A + mโ B = 90° 3. โ A โ โ C 4. mโ A = mโ C 5. mโ C + mโ B = 90° 6. โ C and โ B are complementary Reasons: 1. 2. 3. 4. 5. 6. Example 2: Given: B is the midpoint of ฬ ฬ ฬ ฬ ๐ด๐ถ , ฬ ฬ ฬ ฬ ๐ด๐ต โ ฬ ฬ ฬ ฬ ๐ธ๐น Prove: โ C and โ B are complementary Statements: ฬ ฬ ฬ ฬ 1. B is the midpoint of ๐ด๐ถ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ 2. ๐ต๐ถ โ ๐ด๐ต 3. ฬ ฬ ฬ ฬ ๐ด๐ต โ ฬ ฬ ฬ ฬ ๐ธ๐น ฬ ฬ ฬ ฬ โ ฬ ฬ ฬ ฬ 4. ๐ต๐ถ ๐ธ๐น Reasons: 1. 2. 3. 4. Choices: Definition of Complementary Definition of Congruence Given Substitution Property of Equality Choices: Definition of Midpoint Given Transitive Property of Congruence Example 3: Fill in the blanks to complete the two-column proof. Given: โ 1 and โ 2 form a linear pair. Prove: โ 1 and โ 2 are supplementary Choices: Definition of Supplementary mโ 1 + mโ 2 = 180° mโ 1 + mโ 2 = mโ ABC ___________________________ ______________________________________________________________________________ ____________________________________________ __________________________________ Example 4: Fill in the blanks to complete the two-column proof. Given: โ 1 and โ 2 are supplementary, โ 2 and โ 3 are supplementary Prove: โ 1 โ โ 3 Choices: Subtraction Property of Equality โ 1 ๏ โ 3 mโ 1 + mโ 2 = mโ 2 + mโ 3 โ 1 and โ 2 are supplementary โ 2 and โ 3 are supplementary _______________________________________________________________ _______________ ______________________________________________________________ __________________________________________________________ ____________________ _______________________________________________________________ _______________ Example 5: Complete the two-column proof. Given: โ 1 and โ 2 are right angles Prove: โ 1 โ โ 2 Choices: Definition of Congruent Angle Definition of Right Angles Given Substitution Property of Equality Practice: 1. Given: mโ A = 60°, mโ B = 2mโ A Prove: โ A and โ B are supplementary Statements: 1. mโ A = 60°, mโ B = 2mโ A 2. mโ B = 2(60°) 3. mโ B = 120° 4. mโ A + mโ B = 60° + 120° 5. mโ A + mโ B = 180° 6. โ A and โ B are supplementary Reasons: 1. 2. 3. 4. 5. 6. Choices: Definition of Supplementary Given Simplify Substitution Property of Equality 2. Given: โ 2 โ โ 3 Prove: โ 1 and โ 3 are supplementary ____________________________________________________ __________________________ _______________________________________________ _______________________________ Choices: โ 1 and โ 3 are supplementary โ 1 and โ 2 are supplementary Definition of Congruent Angles Substitution Property of Equality ____________________________________________________ __________________________ _______________________________________________ _______________________________ 3. Given: X is the midpoint of ฬ ฬ ฬ ฬ ๐ด๐, Y is the midpoint of ฬ ฬ ฬ ฬ ๐๐ต ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ Prove: ๐ด๐ โ ๐๐ต Statements: 1. X is the midpoint of ฬ ฬ ฬ ฬ ๐ด๐, Y is the midpoint of ฬ ฬ ฬ ฬ ๐๐ต 2. ฬ ฬ ฬ ฬ ๐ด๐ โ ฬ ฬ ฬ ฬ ๐๐ ฬ ฬ ฬ ฬ โ ฬ ฬ ฬ ฬ ๐๐ ๐๐ต 3. ฬ ฬ ฬ ฬ ๐ด๐ โ ฬ ฬ ฬ ฬ ๐๐ต Reasons: 1. 2. Choices: Definition of Midpoint Given Transitive Property of Equality 3. 4. Given: โโโโโ ๐ต๐ bisects โ ABC, mโ XBC = 45° Prove: โ ABC is a right angle Statements: 1. โโโโโ ๐ต๐ bisects โ ABC 2. โ ABX โ โ XBC 3. mโ ABX = mโ XBC 4. mโ XBC = 45° 5. mโ ABX = 45° 6. mโ ABX + mโ XBC = mโ ABC 7. 45° + 45° = mโ ABC 8. 90° = mโ ABC 9. โ ABC is a right angle Reasons: 1. 2. 3. 4. 5. 6. 7. 8. 9. Choices: Angle Addition Postulate Definition of Angle Bisector Definition of Congruent Angles Definition of Right Angle Given Simplify Substitution Property of Equality 5. Given: โ 1 and โ 2 are supplementary, โ 3 and โ 4 are supplementary, โ 2 โ โ 3 Prove: โ 1 โ โ 4 Choices: Definition of Congruent Angles Substitution Property of Equality mโ 1 = mโ 4 mโ 1 + mโ 2 = 180° mโ 3 + mโ 4 = 180° __________________________________________________________ ____________________ __________________________________________________________ ____________________ __________________________________________________________ ____________________ __________________________________________________________ ____________________ 6. Given: โ BAC is a right angle, โ 2 โ โ 3 Prove: โ 1 and โ 3 are complementary _______________________________________________________ _______________________ _______________________________________________________ _______________________ _______________________________________________________ _______________________ _______________________________________________________ _______________________ Choices: โ 1 and โ 3 are complementary angles mโ 1 + mโ 2 = mโ BAC mโ 2 = mโ 3 Definition of Right Angles Substitution Property of Equality _______________________________________________________ _______________________ 7. Given: โ 1 and โ 3 are complementary, โ 2 and โ 4 are complementary, โ 3 โ โ 4 Prove: โ 1 โ โ 2 Statements: 1. โ 1 and โ 3 are complementary โ 2 and โ 4 are complementary 2. mโ 1 + mโ 3 = 90° mโ 2 + mโ 4 = 90° 3. mโ 1 + mโ 3 = mโ 2 + mโ 4 4. โ 3 โ โ 4 5. mโ 3 = mโ 4 6. mโ 1 + mโ 4 = mโ 2 + mโ 4 7. mโ 1 = mโ 2 8. โ 1 โ โ 2 Reasons: 1. 2. 3. 4. 5. 6. 7. 8. Choices: Definition of Complementary Angles Definition of Congruence Given Substitution Property of Equality Subtraction Property of Equality
© Copyright 2026 Paperzz