Name: Geometric Proofs Date: Period: ______ Example 1: Given: A

Name: _________________________________
Date: __________________ Period: ________
Geometric Proofs
โˆ ๐ด โ‰… โˆ ๐ด
๐ผ๐‘“ โˆ ๐ด โ‰… โˆ ๐ต, . ๐‘กโ„Ž๐‘’๐‘› โˆ ๐ต โ‰… โˆ ๐ด.
๐ผ๐‘“ โˆ ๐ด โ‰… โˆ ๐ต ๐‘Ž๐‘›๐‘‘ โˆ ๐ต โ‰… โˆ ๐ถ, ๐‘กโ„Ž๐‘’๐‘› โˆ ๐ด โ‰… โˆ ๐ถ.
๐ผ๐‘“ โˆ ๐ด โ‰… โˆ ๐ต, . ๐‘กโ„Ž๐‘’๐‘› ๐‘šโˆ ๐ต = ๐‘šโˆ ๐ด.
Example 1:
Given: โˆ A and โˆ B are complementary, โˆ A โ‰… โˆ C
Prove: โˆ C and โˆ B are complementary
Statements:
1. โˆ A and โˆ B are complementary
2. mโˆ A + mโˆ B = 90°
3. โˆ A โ‰… โˆ C
4. mโˆ A = mโˆ C
5. mโˆ C + mโˆ B = 90°
6. โˆ C and โˆ B are complementary
Reasons:
1.
2.
3.
4.
5.
6.
Example 2:
Given: B is the midpoint of ฬ…ฬ…ฬ…ฬ…
๐ด๐ถ , ฬ…ฬ…ฬ…ฬ…
๐ด๐ต โ‰… ฬ…ฬ…ฬ…ฬ…
๐ธ๐น
Prove: โˆ C and โˆ B are complementary
Statements:
ฬ…ฬ…ฬ…ฬ…
1. B is the midpoint of ๐ด๐ถ
ฬ…ฬ…ฬ…ฬ…
ฬ…ฬ…ฬ…ฬ…
2. ๐ต๐ถ โ‰… ๐ด๐ต
3. ฬ…ฬ…ฬ…ฬ…
๐ด๐ต โ‰… ฬ…ฬ…ฬ…ฬ…
๐ธ๐น
ฬ…ฬ…ฬ…ฬ… โ‰… ฬ…ฬ…ฬ…ฬ…
4. ๐ต๐ถ
๐ธ๐น
Reasons:
1.
2.
3.
4.
Choices:
Definition of Complementary
Definition of Congruence
Given
Substitution Property of Equality
Choices:
Definition of Midpoint
Given
Transitive Property of Congruence
Example 3:
Fill in the blanks to complete the two-column proof.
Given: โˆ 1 and โˆ 2 form a linear pair.
Prove: โˆ 1 and โˆ 2 are supplementary
Choices:
Definition of Supplementary
mโˆ 1 + mโˆ 2 = 180°
mโˆ 1 + mโˆ 2 = mโˆ ABC
___________________________
______________________________________________________________________________
____________________________________________
__________________________________
Example 4:
Fill in the blanks to complete the two-column proof.
Given: โˆ 1 and โˆ 2 are supplementary, โˆ 2 and โˆ 3 are supplementary
Prove: โˆ 1 โ‰… โˆ 3
Choices:
Subtraction Property of Equality
โˆ 1 ๏€ โˆ 3
mโˆ 1 + mโˆ 2 = mโˆ 2 + mโˆ 3
โˆ 1 and โˆ 2 are supplementary
โˆ 2 and โˆ 3 are supplementary
_______________________________________________________________
_______________
______________________________________________________________
__________________________________________________________
____________________
_______________________________________________________________
_______________
Example 5:
Complete the two-column proof.
Given: โˆ 1 and โˆ 2 are right angles
Prove: โˆ 1 โ‰… โˆ 2
Choices:
Definition of Congruent Angle
Definition of Right Angles
Given
Substitution Property of Equality
Practice:
1. Given: mโˆ A = 60°, mโˆ B = 2mโˆ A
Prove: โˆ A and โˆ B are supplementary
Statements:
1. mโˆ A = 60°, mโˆ B = 2mโˆ A
2. mโˆ B = 2(60°)
3. mโˆ B = 120°
4. mโˆ A + mโˆ B = 60° + 120°
5. mโˆ A + mโˆ B = 180°
6. โˆ A and โˆ B are supplementary
Reasons:
1.
2.
3.
4.
5.
6.
Choices:
Definition of Supplementary
Given
Simplify
Substitution Property of Equality
2. Given: โˆ 2 โ‰… โˆ 3
Prove: โˆ 1 and โˆ 3 are supplementary
____________________________________________________
__________________________
_______________________________________________
_______________________________
Choices:
โˆ 1 and โˆ 3 are supplementary
โˆ 1 and โˆ 2 are supplementary
Definition of Congruent Angles
Substitution Property of Equality
____________________________________________________
__________________________
_______________________________________________
_______________________________
3. Given: X is the midpoint of ฬ…ฬ…ฬ…ฬ…
๐ด๐‘Œ, Y is the midpoint of ฬ…ฬ…ฬ…ฬ…
๐‘‹๐ต
ฬ…ฬ…ฬ…ฬ…
ฬ…ฬ…ฬ…ฬ…
Prove: ๐ด๐‘‹ โ‰… ๐‘Œ๐ต
Statements:
1. X is the midpoint of ฬ…ฬ…ฬ…ฬ…
๐ด๐‘Œ,
Y is the midpoint of ฬ…ฬ…ฬ…ฬ…
๐‘‹๐ต
2. ฬ…ฬ…ฬ…ฬ…
๐ด๐‘‹ โ‰… ฬ…ฬ…ฬ…ฬ…
๐‘‹๐‘Œ
ฬ…ฬ…ฬ…ฬ… โ‰… ฬ…ฬ…ฬ…ฬ…
๐‘‹๐‘Œ
๐‘Œ๐ต
3. ฬ…ฬ…ฬ…ฬ…
๐ด๐‘‹ โ‰… ฬ…ฬ…ฬ…ฬ…
๐‘Œ๐ต
Reasons:
1.
2.
Choices:
Definition of Midpoint
Given
Transitive Property of Equality
3.
4. Given: โƒ—โƒ—โƒ—โƒ—โƒ—
๐ต๐‘‹ bisects โˆ ABC, mโˆ XBC = 45°
Prove: โˆ ABC is a right angle
Statements:
1. โƒ—โƒ—โƒ—โƒ—โƒ—
๐ต๐‘‹ bisects โˆ ABC
2. โˆ ABX โ‰… โˆ XBC
3. mโˆ ABX = mโˆ XBC
4. mโˆ XBC = 45°
5. mโˆ ABX = 45°
6. mโˆ ABX + mโˆ XBC = mโˆ ABC
7. 45° + 45° = mโˆ ABC
8. 90° = mโˆ ABC
9. โˆ ABC is a right angle
Reasons:
1.
2.
3.
4.
5.
6.
7.
8.
9.
Choices:
Angle Addition Postulate
Definition of Angle Bisector
Definition of Congruent Angles
Definition of Right Angle
Given
Simplify
Substitution Property of Equality
5. Given: โˆ 1 and โˆ 2 are supplementary, โˆ 3 and โˆ 4 are supplementary, โˆ 2 โ‰… โˆ 3
Prove: โˆ 1 โ‰… โˆ 4
Choices:
Definition of Congruent Angles
Substitution Property of Equality
mโˆ 1 = mโˆ 4
mโˆ 1 + mโˆ 2 = 180°
mโˆ 3 + mโˆ 4 = 180°
__________________________________________________________
____________________
__________________________________________________________
____________________
__________________________________________________________
____________________
__________________________________________________________
____________________
6. Given: โˆ BAC is a right angle, โˆ 2 โ‰… โˆ 3
Prove: โˆ 1 and โˆ 3 are complementary
_______________________________________________________
_______________________
_______________________________________________________
_______________________
_______________________________________________________
_______________________
_______________________________________________________
_______________________
Choices:
โˆ 1 and โˆ 3 are complementary angles
mโˆ 1 + mโˆ 2 = mโˆ BAC
mโˆ 2 = mโˆ 3
Definition of Right Angles
Substitution Property of Equality
_______________________________________________________
_______________________
7. Given: โˆ 1 and โˆ 3 are complementary, โˆ 2 and โˆ 4 are complementary, โˆ 3 โ‰… โˆ 4
Prove: โˆ 1 โ‰… โˆ 2
Statements:
1. โˆ 1 and โˆ 3 are complementary
โˆ 2 and โˆ 4 are complementary
2. mโˆ 1 + mโˆ 3 = 90°
mโˆ 2 + mโˆ 4 = 90°
3. mโˆ 1 + mโˆ 3 = mโˆ 2 + mโˆ 4
4. โˆ 3 โ‰… โˆ 4
5. mโˆ 3 = mโˆ 4
6. mโˆ 1 + mโˆ 4 = mโˆ 2 + mโˆ 4
7. mโˆ 1 = mโˆ 2
8. โˆ 1 โ‰… โˆ 2
Reasons:
1.
2.
3.
4.
5.
6.
7.
8.
Choices:
Definition of Complementary Angles
Definition of Congruence
Given
Substitution Property of Equality
Subtraction Property of Equality