Analysis of the far IR spectrum of trimethylene sulfide using evolutionary algorithms Jennifer van Wijngaarden, Durell Desmond, Aimee Bell Department of Chemistry, University of Manitoba, Winnipeg, Canada W. Leo Meerts Radboud University, Nijmegen, Netherlands Trimethylene Sulfide Ring inversion tunneling Ground and first excited vibrational state (ring puckering) are doubled MW spectrum exhibits tunneling splitting D. O. Harris, H. W. Harrington, A. C. Luntz and W. D. Gwinn, J. Chem. Phys. 44, 3467 (1966). 2 MW spectrum of TMS D. O. Harris, H. W. Harrington, A. C. Luntz and W. D. Gwinn, J. Chem. Phys. 44, 3467 (1966). 3 12 a-type and 3 c-type transitions reported Evidence of perturbation Our MW spectrum of TMS… in progress 11112 11112.2 11112.4 11112.6 11112.8 101-000 pure rotational transitions Tunneling splitting ~7.5 MHz 11113 11113.2 Frequency/MHz 4 11113.4 11119.4 11119.6 11119.8 11120 11120.2 11120.4 11120.6 11120.8 Frequency/MHz Canadian Light Source 5 Photo courtesy of Canadian Light Source Inc. FTIR Spectrometer at the Far IR beamline Resolution ~0.00096 cm Bruker IFS125HR 6 Photo courtesy of Canadian Light Source Inc. Far IR spectroscopy at the CLS 2 m multipass cell 80 m absorption Pressure: 85-950 mTorr Temperature: 250 K, 298 K Series of experiments to cover: Range: 50-1050 cm-1 Resolution: 0.00096 cm-1 2 m multipass cell 7 Ring puckering vibration and hotbands 12 cm-1 tunneling splitting cm-1 8 Looking for patterns… Q branch 139 cm-1 ) P branch of higher tunneling state ) R branch of lower tunneling state Q branch 151 cm-1 9 G03 DFT B-3LYP/6-311G++(2d,2p) Higher bands 530 cm-1 845cm-1 500 cm-1 1000 10 845 cm-1 bands Tunneling splitting ~1.4 cm-1 Two a-type rovibrational bands 11 Should also have c-type rovibration-inversion bands ~1000 lines assigned Evidence of perturbation 530 cm-1 bands Tunneling splitting ~0.03 cm-1 Two a-type rovibrational bands Should also have c-type rovibrationinversion bands Prototype band for analysis using evolutionary algorithms Need preliminary analysis Assigned ~2300 lines using LW plots 8<J<59 0<Ka<10 12 R-branch Loomis-Wood plot 530 cm-1 band 13 P-branch Loomis-Wood plot 530 cm-1 band 14 Evolutionary Algorithm (EA) Approach W. L. Meerts and M. Schmitt, Int. Rev. Phys. Chem. 25, 353 (2006). Goal: (More) Automated spectral assignment Genetic algorithms based on natural selection processes pyrazine Nicolet 5700, resolution ~0.09 cm-1 Applied as a global optimizer to analyze spectra Covariance Matrix Adaption- Evolutionary Strategy (CMA-ES) algorithm Has been successfully applied to NMR, LIF, UV absorption spectra etc. Used for FTIR spectrum of pyrazine M. Schmitt et al., J. Mol. Spectrosc. 57, 74 (2009). 15 EA method applied to TMS Starting parameters Taken from preliminary assignment via LW plot Prepare spectra Remove Q branch, hotband Q branches, water lines Smooth background Preliminary tests Gauge sensitivity of parameters, test convergence etc. Set limits on parameters EA analysis CPU time: 30 min. for 40 processors 24 ‘genes’ to make a chromosone Population of 250 300 generations for convergence Cost function 40 (zero is optimal) 16 Section of the R branch Zoom Experiment Simulation based on EA results 538.30 cm-1 17 538.95 Low Ka transitions ? 18 Higher Ka transitions??? New assignments? Experiment Simulation based on EA results 19 Comparison of constants • • • Parameters in blue fixed to EA value Fit done in pGopher (pgopher.chm.bris.ac.uk) Ground state determined separately using GSCDs EA / 0+/0- 1+/1- 0+ 0- 1+ 1- 0 0.2616215 528.9874090 529.2490305 0 0.337280202 0.337432873 0.337280202 0.337280202 0.337432873 0.337432873 0.222582091 0.222446239 0.2223509(19) 0.2225867(27) 0.22223904(6) 0.22245105(9) 0.148135953 0.147641200 0.1481570(3) 0.1481356(3) 0.14765699(3) 0.14764082(3) 0.072952 0.077707 0.07294(9) 0.07418(9) 0.077727(10) 0.076672(9) 1.526905 1.363985 1.5371(20) 1.4628(22) 1.380028(14) 1.39221(15) -4.258586 -3.863400 -4.381(11) -3.866(14) -3.9923(3) -3.7096(9) 0.017915 0.020481 0.017915 0.017915 0.020481 0.020481 0.824409 0.760675 0.824409 0.824409 0.760675 0.760675 cm-1 E A B C / Expt (post EA analysis) x106 528.987414(17) 0.2616215 529.282849(18) cm-1 J JK K δJ δK rms / cm-1 0.000138 0.000175 no.lines 971 GSCDs 2505 20 Combining the LW and EA results Experiment Simulation based on EA+LW results 21 What about P branch??? Experiment Simulation based on EA+LW results 521.16 cm-1 22 521.42 Did the EA analysis help? • • • • Parameters in blue fixed to EA value Pre EA Fit done in SPFIT (spec.jpl.nasa.gov/ftp/pub/calpgm) Post EA Fit done in pGopher (pgopher.chm.bris.ac.uk) Ground state determined separately using GSCDs E / cm-1 A B C / x106 cm-1 J JK K δJ δK rms / cm-1 no.lines Expt (pre EA analysis) 1+ 1528.987436(15) 529.295880(20) Expt (post EA analysis) 1+ 1528.987414(17) 529.282849(18) 0.3375485(14) 0.2221886(5) 0.14765910(2) 0.337133(4) 0.2225862(14) 0.14764181(3) 0.337432873 0.22223904(6) 0.14765699(3) 0.337432873 0.22245105(9) 0.14764082(3) 0.036903(7) 0.08304(19) 0.5670(11) 0.037645(10) 0.0425(5) 0.857(4) 0.077727(10) 1.380028(14) -3.9923(3) 0.020481 0.760675 0.076672(9) 1.39221(15) -3.7096(9) 0.020481 0.760675 0.000117 0.000175 2358 2505 23 Acknowledgements Dr. Brant Billinghurst (CLS Far IR beamline) Questions??? [email protected] [email protected] I’m looking for a PDF in MW or IR spectroscopy. 24 Contact me for info.
© Copyright 2026 Paperzz