High-Level Synthesis-II Virendra Singh Indian Institute of Science Bangalore [email protected] IEP on Digital System Synthesis @ IIT Kanpur Architectural Synthesis Architectural Level Abstraction Datapath Controller Architectural Synthesis • Constructing the macroscopic structure of a digital circuit starting from behavioural models that can be captured from Data flow or Sequencing Graph Dec 18,2007 HLS@iitk 2 Architectural Synthesis Objective • Area • Cycle time • Latency • Throughput Worst case bound Evaluation Architectural Exploration Dec 18,2007 HLS@iitk 3 Architectural Synthesis Architectural synthesis tool can select an appropriate design point according to some user specific criterion and construct corresponding user specific Datapath and Controller Circuit Specification for Architectural Synthesis • Behavioural circuit model • Details about resources being used and constraints •Capture by Sequencing Graph Dec 18,2007 HLS@iitk 4 Architectural Synthesis Resources • Functional Resources • Primitive Resources • Application Specific Resources • Memory Resources • Interface Resources Dec 18,2007 HLS@iitk 5 Architectural Synthesis Circuit Specification • Sequencing Graph • A set of functional resources, fully characterized in terms of area and execution delay • A set of constraints Dec 18,2007 HLS@iitk 6 Architectural Synthesis Computation: Differential Equation Solver xl = x + dx ul = u – (3*x*u*dx) – (3*y*dx) c = xl < a Data Flow Graph (DFG): represent operation and data dependencies Dec 18,2007 HLS@iitk 7 Data Flow Graph x u y 3 dx u 3 1 2 * * 3 6 * dx * 7 * * yl 5 10 a xl + - dx + 8 y u 4 x dx 9 < 11 c ul Dec 18,2007 HLS@iitk 8 Sequencing Graph NOP 1 2 * * 3 * 4 7 * * * 8 + 10 + 9 < 11 5 Dec 18,2007 6 - NOP HLS@iitk 9 Hierarchical Sequencing Graph NOP a.0 a.1 * + a.2 b.0 a.4 a.3 NOP CALL * NOP a.n + b.1 NOP Dec 18,2007 HLS@iitk b.2 * b.n 10 Architectural Synthesis Architectural Synthesis and optimization consistes of two stages 1. Placing the operation in time and in space, i.e., determining their time interval of execution and binding to resources 2. Determining detailed interconnection of the datapath and the logic-level specifications of the control unit Dec 18,2007 HLS@iitk 11 Temporal Domain: Scheduling Delay D = {di; i = 0,1, 2, ….. n} Start time T ={ti; i= 0, 1, …., n) Scheduling: Task of determining the start timing, subject to preceding constraints specified by sequencing graph Latency λ = tn – t0 Dec 18,2007 HLS@iitk 12 Temporal Domain: Scheduling A scheduled sequencing graph is a vertex-weighted sequencing graph, where each vertex is labeled by its start time Operation Start time V1,V2, v6,v8, v10 1 V3, v7, v9,v11 2 V4 3 V5 4 Chaining Dec 18,2007 HLS@iitk 13 Temporal Domain: Scheduling NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 7 Dec 18,2007 * * * 8 + 10 + 9 < 11 5 TIME 4 6 - NOP HLS@iitk 14 Temporal Domain: Scheduling NOP TIME 1 TIME 2 TIME 3 TIME 4 TIME 5 TIME 6 *1 * 2 * * + 10 < 11 - 4 3 6 * 7 * - 8 + TIME 7 Dec 18,2007 NOP 5 9 HLS@iitk 15 Spatial Domain: Binding A fundamental concept that relates operation to resources is binding • Resource types • Resource sharing Simple case of binding is a dedicated resources Dec 18,2007 HLS@iitk 16 Spatial Domain: Binding β(v1) = (1,1) β(v2) = (1,2) β(v3) = (1,3) β(v4) = (2,1) β(v5) = (2,2) .. Dec 18,2007 HLS@iitk 17 Spatial Domain: Binding NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 7 Dec 18,2007 * * * 8 + 10 + 9 < 11 5 TIME 4 6 - NOP HLS@iitk 18 Spatial Domain: Binding A necessary condition for resource binding to produce a valid circuit implementation is that operation corresponding to the shared resource do not execute concurrently A resource binding can be represented by a labeled hyper-graph, where the vertex set V represents operations and the edge set Eβ represents the binding of the operation to the resources Dec 18,2007 HLS@iitk 19 Spatial Domain: Binding NOP (1,1) 1 TIME 1 TIME 2 TIME 3 (1,2) (1,3) 2 * * 3 (2,1) * 4 7 Dec 18,2007 * * * 8 + 10 + 9 < 11 5 TIME 4 6 (2,2) (1,4) - NOP HLS@iitk n 20 Spatial Domain: Binding NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 7 Dec 18,2007 * * 5 TIME 4 6 0 - * 8 + 9 + 10 < 11 NOP n HLS@iitk 21 Sequencing Graph NOP 1 2 * * 3 * 4 7 * * * 8 + 10 + 9 < 11 5 Dec 18,2007 6 - NOP HLS@iitk 22 Hierarchical Sequencing Graph NOP a.0 (1,1) a.1 * + (2,1) a.2 b.0 a.4 a.3 (1,2) NOP CALL * NOP a.n + b.1 NOP Dec 18,2007 HLS@iitk b.2 * b.n 23 Synchronization 0 NOP a 1 * SYN 3 2 + + NOP n Dec 18,2007 HLS@iitk 24 Synchronization 0 NOP NOP 0 a 1 * a SYN SYN 1 * 3 2 + 3 2 + + + NOP n NOP n Dec 18,2007 HLS@iitk 25 Synchronization 0 NOP 1 * a SYN + 2 + 3 NOP n Dec 18,2007 HLS@iitk 26 Area/Performance Estimation Accurate area and performance estimation is not an easy task Schedule: provides latency Binding: provides information about the area Dec 18,2007 HLS@iitk 27 Retiming + + + Host δ Dec 18,2007 δ HLS@iitk δ 28 Retiming 7 0 0 Vg 0 7 0 Vf 7 Ve 0 Vh 0 1 0 3 1 Dec 18,2007 0 Vb Vc 3 3 1 HLS@iitk Vd 3 1 29 Retiming 7 0 0 Vg 0 7 0 Vf 7 Ve 0 Vh 0 1 0 1 3 0 Vb 3 Vc 1 3 Vd 3 1 Delay = 24 Dec 18,2007 HLS@iitk 30 Retiming 1 7 0 0 Vg 0 7 7 Vf Ve 0 Vh 0 1 0 3 1 Dec 18,2007 0 Vb Vc 3 3 0 HLS@iitk Vd 3 1 31 ASAP Scheduling NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 7 * * * 8 + 10 + 9 < 11 5 TIME 4 6 NOP Dec 18,2007 HLS@iitk 32 ASAP Scheduling ASAP(Gs(V,E)){ Schedule v0 by setting t0s = 1; repeat{ select vertex vi whose predecessors are all scheduled; schedule vi by setting tis = max{tjs+ dj} } untill (vn is scheduled) return ts } Dec 18,2007 HLS@iitk 33 ALAP Scheduling NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 5 TIME 4 6 * 7 * - * 8 + 10 + 9 < 11 NOP Dec 18,2007 HLS@iitk 34 Scheduling under Timing Constraints Scheduling under latency constraints Absolute constraints on start time Relative constraints Relative timing constraints are positive integers specified for some operation pair vi, vj A minimum timing constraint lij ≥ 0 requires tj ≥ ti+lij A maximum timing constraint uij ≤ 0 requires tj ≤ ti+uij Dec 18,2007 HLS@iitk 35 Constraint Graph 0 NOP 3 Max 1 * * Time 4 Time 3 Min 4 2 + + NOP n Dec 18,2007 HLS@iitk 36 Constraint Graph 0 NOP 3 Max * * 1 Time 3 2 + + 0 4 0 Min 3 4 1 * Time 4 0 NOP -3 * 2 2 2 4 2 + NOP n + 1 1 NOP n Dec 18,2007 HLS@iitk 37 Relative Scheduling Scheduling under unbounded delay The anchors of a constraint graph G(V,E) consists of the source vertex v0and all vertices with unbounded delay Redundant anchor Dec 18,2007 HLS@iitk 38 Sequencing Graph 0 NOP a 1 * SYN 3 2 + + NOP n Dec 18,2007 HLS@iitk 39 Scheduling with Resource Constraint Scheduling under resource constraints • computing area/latency trade-off points Problems • Intractable problem •Area-performance trade-off points are affected by the other factors - non-resource dominated circuits Dec 18,2007 HLS@iitk 40 Scheduling with Resource Constraint ILP Formulation Binary decision variable X = {xil} 1. Start time of each operation is unique Σl xil = 1 2. Sequencing relations represented by Gs(V,E) must be satisfied Σl xil ≥ Σl xjl + dj 3. Resource bound must be met at every schedule step Σk Σm xim ≤ ak Dec 18,2007 HLS@iitk 41 ILP Formulation All operation must start only once x0,1 = 1 x1,1 = 1 x2,1 = 1 x3,2 = 1 x4,3 = 1 x5,4 = 1 Dec 18,2007 x6,1 + x6,2 = 1 x7,2 + x7,3 = 1 x8,1 + x8,2+x8,3 = 1 x9,2 + x9,3+x9,4 = 1 x10,1 + x10,2+x10,3 = 1 x11,2 + x11,3+x11,4 = 1 xn,5 = 1 HLS@iitk 42 ILP Formulation Constraints – based on sequencing (more than one starting time for at least one operation) 2 x7,2 + 3 x7,3 – x6,1 – 2 x6,2 – 1 ≥ 0 2 x9,2 + 3 x9,3 + 4 x9,4 – x8,1 – 2 x8,2 – 3 x8,3 – 1 ≥ 0 2 x11,2 + 3 x11,3 + 4 x11,4 – x10,1 – 2 x10,2 – 3 x10,3 – 1 ≥ 0 4 x5,4 – 2 x7,2 – 3 x7,3 – 1 ≥ 0 5 xn,5 – 2 x9,2 – 3 x9,3 – 4 x9,4 – 1 ≥ 0 5 xn,5 – 2 x11,2 – 3 x11,3 – 4 x11,4 – 1 ≥ 0 Dec 18,2007 HLS@iitk 43 ILP Formulation Resource Constraints x1,1 + x2,2 + x6,1 + x8,1 ≤ 2 x3,2 + x6,2 + x7,2 + x8,2 ≤ 2 x7,3 + x8,3 ≤ 2 x10,1 ≤ 2 x9,2 + x10,2 + x11,2 ≤ 2 x4,3 + x9,3 + x10,3 + x11,3 ≤ 2 x5,4 + x9,4 +x11,4 ≤ 2 Dec 18,2007 HLS@iitk 44 ILP Formulation Optimize ΣiΣl l.xil x6,1 + 2 x6,2 + 3 x7,2 + 3 x7,3 + x8,1 + 2 x8,2 + 3 x8,3 + 2 x9,2 + 3 x9,3 + 4 x9,4 + x10,1 + 2 x10,2 + 3 x10,3 + 2 x11,2 + 3 x11,3 + 4 x11,4 Dec 18,2007 HLS@iitk 45 Resource Sharing Resource sharing: Assignment of resource to more than one operation Goal: Reduce area Resource binding: explicit definition of mapping between resources and operation Binding may imply some resources are shared Dec 18,2007 HLS@iitk 46 Optimum Scheduling under Resource Constraint NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 5 TIME 4 6 * 7 * - * 8 + 9 + 10 < 11 NOP Dec 18,2007 HLS@iitk 47 Scheduled Sequencing Graph NOP 1 TIME 1 TIME 2 2 * * 3 * 4 TIME 3 5 TIME 4 6 * 7 * - * 8 + 9 + 10 < 11 NOP Dec 18,2007 HLS@iitk 48 Compatibility Graph 9 3 1 8 4 10 7 6 2 5 11 Dec 18,2007 HLS@iitk 49 Conflict Graph 9 3 1 8 4 10 7 6 2 5 11 Dec 18,2007 HLS@iitk 50 Transitive orientation of Compatibility Graph 9 3 1 8 4 10 7 6 2 5 11 Dec 18,2007 HLS@iitk 51 Resource Sharing in NonHierarchical Seq. Graph Searching for binding compatible Σr bir = a Σbir Σ xim ≤ 1 Dec 18,2007 HLS@iitk 52 Scheduled and Bound Sequencing Graph (1,2) (1,1) 1 TIME 1 TIME 2 NOP (2,1) 2 * * 3 * 4 TIME 3 5 TIME 4 - 6 * 7 * (2,2) * 8 + 9 + 10 < 11 NOP Dec 18,2007 HLS@iitk 53
© Copyright 2026 Paperzz