Rey Juan Carlos University (Madrid-Spain) Javier Fermoso1, Héctor Hernando1, Ángel Peral2, Prabhas Jana1, Thangaraju M. Sankaranarayanan1, Patricia Pizarro1,2, Juan M. Coronado1, David P. Serrano1,2 1 Thermochemical 2 Processes Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain. International Congress and Expo on Biofuels & Bioenergy [email protected] INTRODUCTION Pyrolysis: reaction and products PYROLYSIS GAS (10-30 wt.%) CO CO2 H2 C1-C3 BIOMASS CHAR (10-35 wt.%) CxHyOz Cellulose Hemicellulose Lignin BIO-OIL (10-75 wt.%) Reaction Conditions: Temperature (≈ 500 ºC) Heating rate (103-104 K/s) Vapors residence time (≈ 1-2 sg) … “Fast-Pyrolysis” INTRODUCTION 43 45 Bio-oil properties: BIO-OIL 60 100 ACIDS 60 High water content (≈ 25 wt.%) SUGARS O High oxygen content (≈ 50 wt.%) O 50 31 41 44 HO 46 40 100 OH 60 70 50 100 70 80 43 90 53 ALCOHOLS 50 HO OH 67 67 26 0 60 20 30 (mainlib) Furfural 56 30 40 50 74 0 cetaldehyde, hydroxy20 40 60 80 mainlib) Glycerin 60 70 100 120 80 140 90 160 180 100 200 40 50 27 29 42 37 39 41 30 20 25 30 (replib) 2-Propanone, 1-hydroxy- 35 40 45 45 BIOMASS 120 127O 130 High acidity (pH = 2.5) O 144 140 162 150 160 170 180 190 200 50 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 79 130 140 90 39 280 300 120 240 260 55 210 Low stability OH 150 160 200 73 75 65 240 280 320 360 400 74 CATALYTIC PYROLYSIS (I) 60 … 160 53 55 57 50 115 110 108 0 40 80 120 (replib) Phenol, 2-methyl- 31 0 102 100 OH 60 110 220 90 O 51 42 80 KETONES PHENOLS 31 50 98 89 20 30 40 50 60 70 (replib) β-D-Glucopyranose, 1,6-anhydro100 OH 29 29 FURANS 100 0 43 Low HHV (≈ 17 MJ/kg) 73 43 39 O 61 50 61 O HO 57 ALDEHYDES 42 HO 96 OH 100 70 75 BIO-OIL 80 INTERMEDIATE UPGRADED BIO-OIL DEOXYGENATION (II) CATALYTIC HDO (III) LIQUID HYDROCARBON FUEL OBJECTIVE Objective: Study of the in-situ upgrading of fast-pyrolysis bio-oil from eucalyptus woodchips using metal oxide/h-ZSM-5 catalysts: o h-ZSM-5 • Nanostructured materials with high accessibility o 10%MgO/h-ZSM-5 • Mild acid properties: avoid excessive coking • Oxygen removal: decarboxylation o 10%ZnO/h-ZSM-5 o 1%Pd/h-ZSM-5 BIOMASS CATALYTIC PYROLYSIS (I) BIO-OIL INTERMEDIATE UPGRADED BIO-OIL DEOXYGENATION (II) CATALYTIC HDO (III) LIQUID HYDROCARBON FUEL EXPERIMENTAL PROCEDURES Synthesis and characterization of catalysts SYNTHESIS OF SUPPORT TEOS AIP (silica source) (Aluminium source) METAL INCORPORATION h-ZSM-5 2 STEPS WET IMPREGNATION (10 WT% MEOX) CALCINATION 450 ºC, 6H, AIR SILANIZATION OF ZEOLITIC UNITS Ethanol + M(NO3)2, M=Mg, Zn TPAOH PHAPTMS (Structure directing agent) (Silanization agent) Support 500ºC CHARACTERIZATION TECHNIQUES XRD: Crystallinity Ar (87K) physisorption: Textural properties ICP-OES: chemical composition NH3-TPD: acidity measurements TEM: Morphology & pore structure EXPERIMENTAL PROCEDURES Biomass tank purge valve Experimental fast-pyrolysis lab-scale setup N2/Air MFC 1 Biomass tank N2 N2 200 Nml/min Biomass feeding valve MFC 2 Thermocouples (non-catalytic and catalytic zones) Furnace 1 Non-catalytic zone Furnace 2 N2 200 Nml/min Reactor CHAR CATALYST BED BIO-OIL condensation system N/Air 2/GAS N 2 (H , CO, CO , C -C ) 2 BIO-OIL ≈ 0-4ºC 2 1 3 EXPERIMENTAL PROCEDURES Experimental conditions for pyrolysis tests Biomass: Eucalyptus woodchips (EU) Proximate Analysis (db, wt.%) Ultimate Analysis (daf, wt.%) Sample H2 O Volatile matter Ash Fixed Carbon C H N O HHV (MJ/kg) EU 9.7 74.7 1.8 23.5 51.2 5.9 0.1 42.7 20.0 db: dry basis daf: dry, ash free basis Reaction conditions: Temperature: 500ºC Pressure: 1 atm N2 flow rate: 100 Nml/min Biomass fed: ≈ 5 gr Catalyst bed: 1 gr Eucalyptus woodchips (0.5-1 mm) - Non-catalytic Fast-pyrolysis Catalytic (h-ZSM-5) • h-ZSM-5 • 10%MgO/h-ZSM-5 • 10%ZnO/h-ZSM-5 • 1%Pd/h-ZSM-5 RESULTS Catalysts characterization 500 NL-DFT pore size distribution h-ZSM-5 MgO/h-ZSM-5 ZnO/h-ZSM-5 MFI micropores h-ZSM-5 MgO/h-ZSM-5 ZnO/h-ZSM-5 1.5 3 dV(logD) (cm /g) 400 300 1.0 Secondary porosity NH3-TPD 200 15 100 0.5 MgO/h-ZSM-5 0.660 mmol/g 10 0 0.0 0.2 0.4 desroped 10 (a.u.) NH3 NH desorbed x 103x (a.u.) 3 3 Adsorbed volume (cm /g STP) Ar (87K) adsorption-desorption 3 P/P0 5 0.6 0 0.8 0.0 1.0 10 D (A) 100 1000 ZnO/h-ZSM-5 15 0.704 mmol/g Catalysts physico-chemical properties 10 Catalyst h-ZSM-5 Si/Al 47 10%MgO/h-ZSM-5 - 10%ZnO/h-ZSM-5 - 5 MeO/Pd loading 0 (wt.%) SBET (m2/g) SMESO+EXT (m2/g) - 15 557 295 8,410 434 9,7 5 398 0 100 200 300 Total acidity (mmolNH3/g) Total basicity (mmolCO2/g) 262 0,360 0,018 202 232 0,660 0,219 174 224 0,704 0,030 400 SMICRO (m2/g) h-ZSM-5 0.360 mmol/g 500 Temperature (ºC) RESULTS Catalysts characterization TEM analysis XRD analysis h-ZSM-5 Intensity (a.u.) MgO/h-ZSM-5 50 nm 500 nm MgO/h-ZSM-5 ZnO/h-ZSM-5 ZnO/h-ZSM-5 h-ZSM-5 10 20 30 40 500 nm 50 2 ( º) Metal oxides not detected in the XRD patterns neither in TEM micrographs • High dispersion into the support leading to very small particles • Partial ion exchange of protons of the support by Mg2+ and Zn2+ cations? 500 nm RESULTS Catalysts characterization Ar (87K) adsorption-desorption TEM analysis Pd/h-ZSM-5 100 nm Catalyst h-ZSM-5 1%Pd/h-ZSM-5 Si/Al MeO/Pd loading (wt.%) SBET (m2/g) SMESO+EXT (m2/g) SMICRO (m2/g) Total acidity (mmolNH3/g) Total basicity (mmolCO2/g) 47 - 557 295 262 0,360 0,018 - 1,0 432 254 178 - - RESULTS Mass yield of fast-pyrolysis products Activity tests (Bio-oil*: bio-oil in water free basis) Bio-oil*: Non-catalytic 42 wt% > 24-30 wt% Catalytic 3 wt.% Gas (from 12 to 20-24 wt.%) Decarboxylation (- CO2) Decarbonylation (- CO) Cracking Dehydration (- H2O) RESULTS Activity tests Bio-oil phases distribution RESULTS Activity tests Van Krevelen diagram CRUDE OIL 42.7 29.5 29 27.8 HHV (MJ/kg) NON-CATALYTIC 28.8 EU 20 RESULTS Activity tests Quantity vs quality… ENERGY YIELD: 27.8 29.5 29.0 28.8 Decarboxylation (- CO2) HHV (MJ/kgbio-oil*) Dehydration (- H2O) - COKE (4-6%) - Hydrocarbons (2.5-4 %) RESULTS Activity tests Bio-oil composition CONCLUSIONS o Very high dispersions have been achieved by wet impregnation of MgO, ZnO and Pd over hZSM-5 zeolite. o The incorporation of Mg and Zn phases causes strong changes in both the surface area and the acid-base properties of the zeolite, suppressing in a great extension the Brönsted acidity. o The use of zeolitic catalysts reduces the bio-oil yield (in a water free basis) due to the oxygen removal as the bio-oil undergoes extensive deoxygenation over the catalyst, which in turn implies an improvement of its quality as fuel. o Pd/h-ZSM-5 exhibits the poorest performance by promoting the decarbonylation of pyrolysis vapours. o Using the zeolitic catalysts, large amounts of both oxygenated aromatic compounds and aromatic hydrocarbons are produced due to the extensive conversion of sugar derivatives and furans. o MgO moderates the formation of aromatic hydrocarbons in favor of oxygenated aromatics due to the reduction caused by these metals in the concentration of strong zeolitic acid sites. ACKNOWLEDGEMENTS Thermochemical Processes Unit Special Thanks to: • • • • • • • • • David Serrano Juan M. Coronado Prabhas Jana T. M. Sankaranarayanan Inés Moreno Javier Fermoso Antonio Berenguer Héctor Hernando Sergio Jiménez Technicians: • Laura García • Marís Eugenia • Ana Mª Fernández • Fernando Pico URJC • • Ángel Peral María Linares The authors gratefully acknowledge the financial support from the European Union Seventh Framework Programme (FP7/ 2007-2013) under grant agreement n°604307. Javier Fermoso1, Héctor Hernando1, Ángel Peral2, Prabhas Jana1, Thangaraju M. Sankaranarayanan1, Patricia Pizarro1,2, Juan M. Coronado1, David P. Serrano1,2 1 Thermochemical Processes 2 Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain. International Congress and Expo on Biofuels & Bioenergy [email protected]
© Copyright 2026 Paperzz