h-ZSM-5 - cloudfront.net

Rey Juan Carlos University
(Madrid-Spain)
Javier Fermoso1, Héctor Hernando1, Ángel Peral2, Prabhas Jana1, Thangaraju M.
Sankaranarayanan1, Patricia Pizarro1,2, Juan M. Coronado1, David P. Serrano1,2
1 Thermochemical
2
Processes Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain.
International Congress and Expo on Biofuels & Bioenergy
[email protected]
INTRODUCTION
Pyrolysis: reaction and products
PYROLYSIS
GAS (10-30 wt.%)
CO CO2
H2 C1-C3
BIOMASS
CHAR (10-35 wt.%)
CxHyOz
Cellulose
Hemicellulose
Lignin
BIO-OIL (10-75 wt.%)
Reaction Conditions:
 Temperature (≈ 500 ºC)
 Heating rate
(103-104 K/s)
 Vapors residence time (≈ 1-2 sg)
…
“Fast-Pyrolysis”
INTRODUCTION
43
45
Bio-oil properties:
BIO-OIL
60
100
ACIDS
60
 High water content (≈ 25 wt.%)
SUGARS
O
 High oxygen content (≈ 50 wt.%)
O
50
31
41 44
HO
46
40
100
OH
60
70
50
100
70
80
43
90
53
ALCOHOLS
50
HO
OH
67
67
26
0
60
20 30
(mainlib) Furfural
56
30
40
50
74
0
cetaldehyde,
hydroxy20
40
60
80
mainlib) Glycerin
60
70
100
120
80
140
90
160
180
100
200
40
50
27
29
42
37 39 41
30
20
25
30
(replib) 2-Propanone, 1-hydroxy-
35
40
45
45
BIOMASS
120
127O
130
 High acidity (pH = 2.5)
O
144
140
162
150
160
170
180
190
200
50
70
80
90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
79
130
140 90
39
280 300
120
240
260
55
210
 Low stability
OH
150
160
200
73 75
65
240
280
320
360
400
74
CATALYTIC
PYROLYSIS
(I)
60
…
160
53 55 57
50
115
110
108
0
40
80
120
(replib) Phenol, 2-methyl-
31
0
102
100
OH
60
110
220
90
O
51
42
80
KETONES PHENOLS
31
50
98
89
20
30
40
50
60
70
(replib) β-D-Glucopyranose, 1,6-anhydro100
OH
29
29
FURANS
100
0
43
 Low HHV (≈ 17 MJ/kg)
73
43
39
O
61
50 61
O
HO
57
ALDEHYDES
42
HO
96
OH
100
70
75
BIO-OIL
80
INTERMEDIATE UPGRADED
BIO-OIL
DEOXYGENATION
(II)
CATALYTIC
HDO
(III)
LIQUID
HYDROCARBON
FUEL
OBJECTIVE
Objective:
Study of the in-situ upgrading of fast-pyrolysis bio-oil from eucalyptus
woodchips using metal oxide/h-ZSM-5 catalysts:
o h-ZSM-5
• Nanostructured materials with high accessibility
o 10%MgO/h-ZSM-5
• Mild acid properties: avoid excessive coking
• Oxygen removal: decarboxylation
o 10%ZnO/h-ZSM-5
o 1%Pd/h-ZSM-5
BIOMASS
CATALYTIC
PYROLYSIS
(I)
BIO-OIL
INTERMEDIATE UPGRADED
BIO-OIL
DEOXYGENATION
(II)
CATALYTIC
HDO
(III)
LIQUID
HYDROCARBON
FUEL
EXPERIMENTAL PROCEDURES
Synthesis and characterization of catalysts
SYNTHESIS OF SUPPORT
TEOS
AIP
(silica source) (Aluminium source)
METAL INCORPORATION
h-ZSM-5
2 STEPS WET IMPREGNATION
(10 WT% MEOX)
CALCINATION
450 ºC, 6H, AIR
SILANIZATION OF
ZEOLITIC UNITS
Ethanol + M(NO3)2,
M=Mg, Zn
TPAOH
PHAPTMS
(Structure
directing agent)
(Silanization agent)
Support
500ºC
CHARACTERIZATION TECHNIQUES
XRD: Crystallinity
Ar (87K) physisorption: Textural properties
ICP-OES: chemical composition
NH3-TPD: acidity measurements
TEM: Morphology & pore structure
EXPERIMENTAL PROCEDURES
Biomass tank
purge valve
Experimental fast-pyrolysis lab-scale setup
N2/Air
MFC 1
Biomass tank
N2
N2 200 Nml/min
Biomass feeding
valve
MFC 2
Thermocouples
(non-catalytic and catalytic zones)
Furnace 1
Non-catalytic zone
Furnace 2
N2 200 Nml/min
Reactor
CHAR
CATALYST BED
BIO-OIL condensation system
N/Air
2/GAS
N
2
(H , CO, CO , C -C )
2
BIO-OIL
≈ 0-4ºC
2
1
3
EXPERIMENTAL PROCEDURES
Experimental conditions for pyrolysis tests
Biomass: Eucalyptus woodchips (EU)
Proximate Analysis (db, wt.%)
Ultimate Analysis (daf, wt.%)
Sample
H2 O
Volatile
matter
Ash
Fixed
Carbon
C
H
N
O
HHV
(MJ/kg)
EU
9.7
74.7
1.8
23.5
51.2
5.9
0.1
42.7
20.0
db: dry basis
daf: dry, ash free basis
Reaction conditions:
Temperature: 500ºC
Pressure: 1 atm
N2 flow rate: 100 Nml/min
Biomass fed: ≈ 5 gr
Catalyst bed: 1 gr
Eucalyptus woodchips (0.5-1 mm)
- Non-catalytic
Fast-pyrolysis
Catalytic
(h-ZSM-5)
•
h-ZSM-5
•
10%MgO/h-ZSM-5
•
10%ZnO/h-ZSM-5
•
1%Pd/h-ZSM-5
RESULTS
Catalysts characterization
500
NL-DFT pore size distribution
h-ZSM-5
MgO/h-ZSM-5
ZnO/h-ZSM-5
MFI micropores
h-ZSM-5
MgO/h-ZSM-5
ZnO/h-ZSM-5
1.5
3
dV(logD) (cm /g)
400
300
1.0
Secondary porosity
NH3-TPD
200
15
100
0.5
MgO/h-ZSM-5
0.660 mmol/g
10
0
0.0
0.2
0.4
desroped
10 (a.u.)
NH3 NH
desorbed
x 103x (a.u.)
3
3
Adsorbed volume (cm /g STP)
Ar (87K) adsorption-desorption
3
P/P0
5
0.6
0
0.8
0.0
1.0
10
D (A)
100
1000
ZnO/h-ZSM-5
15
0.704 mmol/g
Catalysts
physico-chemical
properties
10
Catalyst
h-ZSM-5
Si/Al
47
10%MgO/h-ZSM-5
-
10%ZnO/h-ZSM-5
-
5
MeO/Pd loading
0
(wt.%)
SBET
(m2/g)
SMESO+EXT
(m2/g)
- 15
557
295
8,410
434
9,7 5
398
0
100
200
300
Total acidity
(mmolNH3/g)
Total basicity
(mmolCO2/g)
262
0,360
0,018
202
232
0,660
0,219
174
224
0,704
0,030
400
SMICRO
(m2/g)
h-ZSM-5
0.360 mmol/g
500
Temperature (ºC)
RESULTS
Catalysts characterization
TEM analysis
XRD analysis
h-ZSM-5
Intensity (a.u.)
MgO/h-ZSM-5
50 nm
500 nm
MgO/h-ZSM-5
ZnO/h-ZSM-5
ZnO/h-ZSM-5
h-ZSM-5
10
20
30
40
500 nm
50
2  ( º)
Metal oxides not detected in
the XRD patterns neither in
TEM micrographs
•
High dispersion into the support
leading to very small particles
•
Partial ion exchange of protons of the
support by Mg2+ and Zn2+ cations?
500 nm
RESULTS
Catalysts characterization
Ar (87K) adsorption-desorption
TEM analysis
Pd/h-ZSM-5
100 nm
Catalyst
h-ZSM-5
1%Pd/h-ZSM-5
Si/Al
MeO/Pd loading
(wt.%)
SBET
(m2/g)
SMESO+EXT
(m2/g)
SMICRO
(m2/g)
Total acidity
(mmolNH3/g)
Total basicity
(mmolCO2/g)
47
-
557
295
262
0,360
0,018
-
1,0
432
254
178
-
-
RESULTS
Mass yield of fast-pyrolysis products
Activity tests
(Bio-oil*: bio-oil in water free basis)
Bio-oil*:
Non-catalytic 42 wt% > 24-30 wt%
Catalytic
3 wt.%
Gas (from 12 to 20-24
wt.%)
Decarboxylation (- CO2)
Decarbonylation (- CO)
Cracking
Dehydration
(- H2O)
RESULTS
Activity tests
Bio-oil phases distribution
RESULTS
Activity tests
Van Krevelen diagram
CRUDE OIL
42.7
29.5
29
27.8
HHV (MJ/kg)
NON-CATALYTIC
28.8
EU
20
RESULTS
Activity tests
Quantity vs quality…
ENERGY YIELD:
27.8
29.5
29.0
28.8
Decarboxylation (- CO2)
HHV (MJ/kgbio-oil*)
Dehydration (- H2O)
- COKE (4-6%)
- Hydrocarbons (2.5-4 %)
RESULTS
Activity tests
Bio-oil composition
CONCLUSIONS
o
Very high dispersions have been achieved by wet impregnation of MgO, ZnO and Pd over hZSM-5 zeolite.
o
The incorporation of Mg and Zn phases causes strong changes in both the surface area and
the acid-base properties of the zeolite, suppressing in a great extension the Brönsted acidity.
o
The use of zeolitic catalysts reduces the bio-oil yield (in a water free basis) due to the oxygen
removal as the bio-oil undergoes extensive deoxygenation over the catalyst, which in turn
implies an improvement of its quality as fuel.
o
Pd/h-ZSM-5 exhibits the poorest performance by promoting the decarbonylation of pyrolysis
vapours.
o
Using the zeolitic catalysts, large amounts of both oxygenated aromatic compounds and
aromatic hydrocarbons are produced due to the extensive conversion of sugar derivatives
and furans.
o
MgO moderates the formation of aromatic hydrocarbons in favor of oxygenated aromatics
due to the reduction caused by these metals in the concentration of strong zeolitic acid sites.
ACKNOWLEDGEMENTS
Thermochemical Processes Unit
Special Thanks to:
•
•
•
•
•
•
•
•
•
David Serrano
Juan M. Coronado
Prabhas Jana
T. M. Sankaranarayanan
Inés Moreno
Javier Fermoso
Antonio Berenguer
Héctor Hernando
Sergio Jiménez
Technicians:
•
Laura García
•
Marís Eugenia
•
Ana Mª Fernández
•
Fernando Pico
URJC
•
•
Ángel Peral
María Linares
The authors gratefully acknowledge the financial support from the European
Union Seventh Framework Programme (FP7/ 2007-2013) under grant
agreement n°604307.
Javier Fermoso1, Héctor Hernando1, Ángel Peral2, Prabhas Jana1, Thangaraju M. Sankaranarayanan1, Patricia Pizarro1,2,
Juan M. Coronado1, David P. Serrano1,2
1 Thermochemical Processes
2
Unit, IMDEA Energy Institute, 28935, Móstoles, Madrid, Spain
Chemical and Environmental Engineering Group, ESCET, Rey Juan Carlos University, 28933, Móstoles, Madrid, Spain.
International Congress and Expo on Biofuels & Bioenergy
[email protected]