The Effective Field Theory approach to Dark Energy and Modified Gravity phenomenology Marco Raveri Lecture for KICP Cosmology Class Feb 24, 2017 Marco Raveri 24/02/17 14:53 Introduction DE/MG EFT approach Conclusions 1. Why Dark Energy (DE)? [ Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), arXiv:1205.3365v1 ] 2. Why Modified Gravity (MG)? [ Modified Gravity and Cosmology, arXiv:1106.2476 ] 3. Why both??? 4. EFT approach: • how to build the EFT of DE/MG • conformal invariance • why a scalar field? • possible generalizations • stability • how to use the EFT (mapping other theories) • cosmological phenomenology (EFTCAMB) Marco Raveri 2 Introduction DE/MG EFT approach Conclusions 4. EFT approach: • how to build the EFT of DE/MG [ arXiv:1210.0201, arXiv:1211.7054, arXiv:1304.4840, arXiv:1601.04064, arXiv:1609.00716 ] • stability [ … + arXiv:1609.03599 ] • how to use the EFT (mapping other theories) [ … + arXiv:1601.04064 ] • cosmological phenomenology (EFTCAMB) [ … + arXiv:1312.5742, arXiv:1405.1022, arXiv:1405.3590 ] Marco Raveri 3 Introduction DE/MG EFT approach Conclusions Invitation One of the greatest problems of modern physics: we developed our theory of gravity on the earth, it works perfectly at the solar system level, as soon as we consider the Universe it drastically fails. Cosmic Acceleration Problem: Cosmological Principle Solar System GR Ordinary matter + Dark matter Marco Raveri 4 Introduction DE/MG EFT approach Conclusions Invitation One of the greatest problems of modern physics: we developed our theory of gravity on the earth, it works perfectly at the solar system level, as soon as we consider the Universe it drastically fails. d es no Cosmic AccelerationoProblem: t wor k! Cosmological Principle Solar System GR Ordinary matter + Dark matter Marco Raveri 5 Introduction DE/MG EFT approach Conclusions 26 fainter 24 22 Supernova Cosmology Project High-Z Supernova Search Is it a cosmological constant? Calan/Tololo Supernova Survey 25 20 18 0.2 24 0.4 0.6 1.0 magnitude 16 14 0.01 23 0.02 22 0.04 0.1 Accelerating Universe 21 Decelerating Universe 20 0.2 0.4 0.6 1.0 redshift ( Science “Breakthrough of the year” 1998; Perlmutter, Physics Today (2003); Discovery awarded with the Nobel Prize in 2011) Marco Raveri 6 Introduction DE/MG EFT approach Conclusions The Cosmological Constant problem The cosmological constant can be there: it is allowed by the requirements used to build General Relativity (Lovelock’s theorem) Gravitational field equations: Marco Raveri 7 Introduction DE/MG EFT approach Conclusions GR is a well defined “classical” theory Take: fit to the data, get a good fit (?), end of the story. There is no “classical” CC problem Marco Raveri 8 Introduction DE/MG EFT approach Conclusions The problem arises when one takes into account quantum field theory. Why: in flat space-time the only invariant tensor is Since the vacuum state must be the same for all observers, one necessarily has To curved space-times This does not necessarily guarantee that is constant… (Running Vacuum Cosmology) [ A. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968) ] Marco Raveri 9 Introduction DE/MG EFT approach Conclusions Now assume that vacuum gravitates: rewrite: where: Marco Raveri 10 Introduction DE/MG EFT approach Measure Conclusions Predict Adjust Marco Raveri 11 Introduction DE/MG EFT approach Conclusions Standard calculation which turns out to be wrong… wrong equation of state! Is this a low energy problem? Marco Raveri 12 Introduction DE/MG Quantum Gravity cutoff SUSY cut-off EW phase transition QCD phase transition muon electron Marco Raveri (10 18 EFT approach GeV ) 4 4 (T eV ) 4 (200 GeV ) Conclusions fine tuning to 120 decimal places fine tuning to 60 decimal places fine tuning to 56 decimal places 4 (0.3 GeV ) 4 (100M eV ) 4 (M eV ) fine tuning to 44 decimal places (meV )4 observed value fine tuning to 36 decimal places 13 Introduction DE/MG EFT approach Measure Conclusions Predict Adjust Solar system orbits Atomic levels Too much! …and not radiatively stable [ arXiv:1502.05296v1 ] Marco Raveri 14 Introduction DE/MG EFT approach Conclusions We do not know how to do this calculation… What does the space of solutions look like? Marco Raveri 15 Introduction DE/MG EFT approach Conclusions We do not know how to do this calculation… What does the space of solutions look like? Second face of Lovelock’s theorem: any extension of GR is not going to look like GR… We do not know how quantum vacuum gravitates… but Marco Raveri 16 Introduction DE/MG EFT approach Conclusions Dark energy Save the geometrical structure of GR and add components to the energy budget of the universe For example add a simple scalar field: Standard term Marco Raveri kinetic term potential 17 Introduction DE/MG EFT approach Conclusions Dark energy Save the geometrical structure of GR and add components to the energy budget of the universe For example add a simple scalar field: Warning Weinberg’s no-go theorem Marco Raveri 18 Introduction DE/MG EFT approach Conclusions Modifications of gravity Intriguing idea: Realized in some models [ arXiv:1309.6562 ] Give up (some of) the geometrical structure of GR and try to source cosmic acceleration Marco Raveri 19 Introduction DE/MG EFT approach Conclusions There are other reasons why we might want to modify gravity 1 GR is not UV complete At some point GR needs to be modified Doomed by Lovelock’s theorem + the CC problem is a UV problem Marco Raveri 20 Introduction DE/MG EFT approach Conclusions There are other reasons why we might want to modify gravity 2 because we can GR has been tested on solar system scales other regimes: GW and black holes, cosmology Marco Raveri 21 Introduction DE/MG 10 10 10 10 10 Curvature, (cm -2 ) 10 10 10 10 10 10 10 10 10 10 10 10 10 Marco Raveri Conclusions -11 Triple -14 AdLIGO LOFT + Athena -17 -20 -23 eLISA Sgr A* -26 Inv. Sq. -29 -32 Atom PPN constraints PTA M87 -35 EHT ELT S stars -38 -41 -44 -47 -50 Tidal streams (GAIA) A -53 P -56 Planck Facility BAO -59 DETF4 -62 10 [ arXiv:1412.3455v3 ] EFT approach -12 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 Potential, 22 Introduction DE/MG 10 10 10 10 10 Curvature, (cm -2 ) 10 10 10 10 10 10 10 10 10 10 10 10 10 Marco Raveri Conclusions -11 Triple -14 AdLIGO LOFT + Athena -17 SOLAR SYSTEM -20 -23 eLISA Sgr A* -26 Inv. Sq. -29 -32 Atom PPN constraints PTA M87 -35 EHT ELT S stars -38 BH -41 -44 We are here COSMOLOGY -47 -50 Tidal streams (GAIA) A -53 P -56 Planck Facility BAO -59 DETF4 -62 10 [ arXiv:1412.3455v3 ] EFT approach -12 10 -10 10 -8 10 -6 10 -4 10 -2 10 0 Potential, 23 Introduction DE/MG EFT approach Conclusions CMB-S4 WiggleZ + many more… ( CMB temperature, CMB lensing, galaxy weak lensing convergence and number counts fluctuations: the cosmological pie that I like ) Marco Raveri 24 Introduction DE/MG EFT approach Conclusions The situation in model space: Cosmological Constant Kaluza-Klein Theories of Gravity Randall-Sundrum Gravity Brane Cosmology Higher Dimensional Theories of Gravity Dvali-Gabadadze-Porrati Gravity Higher Co-Dimension Brane worlds Einstein Gauss-Bonnet Gravity f(R) Theories Models for Cosmic Acceleration Modified Gravity Horava-Lifschitz Gravity Higher Derivative and Non-Local Theories of Gravity Covariant galileon Galileons DBI galileon Multi-galileons Scalar-Tensor Theories Einstein-AEther Theories Extra-Fields Brans-Dicke theory Horndeski Rosen’s theory Bimetric Theories Drummond’s theory Massive gravity Dark Energy Non-minimally coupled to matter Minimally coupled to matter TeVeS Theories Bigravity Quintessence K-essence [ based on arXiv:1106.2476, by far not complete… ] Marco Raveri 25 Introduction DE/MG EFT approach Conclusions The EFT approach The standard way: Write the theory Marco Raveri Get equations of motion Do the limit 26 Introduction DE/MG EFT approach Conclusions The standard way: Write the theory Get equations of motion Do the limit The EFT way: Do the limit Marco Raveri Write the theory Get equations of motion 27 Introduction DE/MG EFT approach Conclusions The standard way: Write the theory Get equations of motion Do the limit The EFT way: Get equations of motion Do the limit Write a general theory Marco Raveri 28 Introduction DE/MG EFT approach Conclusions The Cosmological Principle: the universe is homogeneous and isotropic if seen by a comoving observer Relevant limit: cosmological perturbations As a consequence it has a maximally symmetric 3+1 foliation [ arXiv:1304.4840 ] Marco Raveri 29 Introduction DE/MG EFT approach Conclusions The ADM metric: Normal vector, extrinsic and intrinsic curvature: Marco Raveri 30 Introduction DE/MG EFT approach Conclusions What are all the scalar quantities that we can define here: The most general theory of gravity on the foliation will depend on all of them: Marco Raveri 31 Introduction DE/MG EFT approach Conclusions Where to stop? There are other quantities that we can add: Lorentz violating terms: [ arXiv:1409.1984v2, arXiv:1601.04064v2 ] they didn’t stop… Higher order terms: Marco Raveri 32 Introduction DE/MG EFT approach Conclusions Now expand the EFT Lagrangian in perturbations: Marco Raveri 33 Introduction DE/MG EFT approach Conclusions Now expand the EFT Lagrangian in perturbations: Average Lagrangian First order action Cosmological background Second order action Cosmological perturbations Marco Raveri 34 Introduction DE/MG EFT approach Conclusions Now expand the EFT Lagrangian in perturbations: Derivatives evaluated on the background -> functions of time only See why we excluded higher powers of operators? Marco Raveri 35 Introduction DE/MG EFT approach Conclusions After some algebraic reshuffling this can be casted in a more familiar (?) form only real trick is the Gauss-Codazzi relation If interested in the details here’s the references… [ arXiv:1304.4840, arXiv:1601.04064 ] S= Z ⇢ 2 m 0 d4 x g [1 + ⌦(⌧ )] R + ⇤(⌧ ) a2 c(⌧ ) g 00 2 2 M̄ M24 (⌧ ) 2 00 2 M̄13 (⌧ ) 2 00 µ M̄22 (⌧ ) 3 (⌧ ) µ 2 + (a g ) a g Kµ ( Kµ ) K⌫µ Kµ⌫ 2 2 2 2 a2 M̂ 2 (⌧ ) 00 (3) + g R + m22 (⌧ )(g µ⌫ + nµ n⌫ )@µ (a2 g 00 )@⌫ (a2 g 00 ) + Sm [gµ⌫ ] 2 Marco Raveri p 36 Introduction DE/MG EFT approach Conclusions Where are we? S= Z ⇢ 2 m 0 d4 x g [1 + ⌦(⌧ )] R + ⇤(⌧ ) a2 c(⌧ ) g 00 2 2 M̄ M24 (⌧ ) 2 00 2 M̄13 (⌧ ) 2 00 µ M̄22 (⌧ ) 3 (⌧ ) µ 2 + (a g ) a g Kµ ( Kµ ) K⌫µ Kµ⌫ 2 2 2 2 a2 M̂ 2 (⌧ ) 00 (3) + g R + m22 (⌧ )(g µ⌫ + nµ n⌫ )@µ (a2 g 00 )@⌫ (a2 g 00 ) + Sm [gµ⌫ ] 2 p here, along with all other matter species Marco Raveri 37 Introduction DE/MG EFT approach Conclusions What are the assumptions about the matter sector? In writing this we implicitly assume that matter is minimally and universally coupled to the metric tensor This means that particles of the m specie would travel on geodesics of g in absence of non-gravitational forces Marco Raveri 38 Introduction DE/MG EFT approach Conclusions Connection to the Einstein frame The Einstein frame is a conformal frame where the EH part of the action is not modified Is GR conformal invariant? Marco Raveri 39 Introduction DE/MG EFT approach Conclusions After an appropriate conformal transformation details here: arXiv:1210.0201 notice difference in notation…sigh… Is the structure of the EFT unchanged? Marco Raveri 40 Introduction DE/MG EFT approach Conclusions Where is the trick? We have broken time translations does not leave invariant the action Stuckelberg trick Now under an infinitesimal coordinate transformation: is invariant Marco Raveri 41 Introduction DE/MG EFT approach Conclusions Apply this to the EFT action: transform all pieces and expand details here [ arXiv:1211.7054 ] Marco Raveri 42 Introduction DE/MG EFT approach Conclusions Apply this to the EFT action Marco Raveri 43 Introduction DE/MG EFT approach Conclusions Why a scalar field? It’s the Goldstone boson of time translations FRW background itself breaks time translations everything that respects the FRW background is going to have at least this form ( connection with unitary gauge ) Is there any difference between DE and MG? Marco Raveri 44 Introduction DE/MG EFT approach Conclusions Possible extensions The ultimate limit of the idea of the EFT of DE/MG is the cosmological principle • Additional scalar, vector and tensor fields [ arXiv:1604.01396 ] • Non-universal couplings [ arXiv:1504.05481, arXiv:1609.01272 ] • Higher order terms in derivatives [ arXiv:1409.1984, arXiv:1601.04064 ] • Higher order in perturbation theory [ ? ] Marco Raveri 45 Introduction DE/MG EFT approach Conclusions How to use the EFT Two ways to approach the EFT 1 fix the form of the EFT functions with a model 2 study the EFT functions Marco Raveri 46 Introduction DE/MG EFT approach Conclusions Map models into the EFT framework 1 Marco Raveri quintessence 47 Introduction DE/MG EFT approach Conclusions Map models into the EFT framework 2 Marco Raveri f(R) gravity 48 Introduction DE/MG EFT approach Conclusions Map models into the EFT framework 3 Galileons/Horndeski 4 Beyond Horndeski 5 Horava gravity … …many more… Marco Raveri 49 Introduction DE/MG EFT approach Conclusions Stability of perturbations Positive Newtonian constant No ghost instabilities No gradient instabilities Positive mass of the scalar Priors for the model Very technical (and complicated) discussion. Some of it in all EFT of DE/MG papers. Especially [ arXiv:1609.03599v1 ]. Marco Raveri 50 Introduction DE/MG -0.5 -0.6 EFT approach Conclusions -0.80 -0.996 -0.85 -0.997 -0.8 -0.90 -0.998 -1.0 -0.95 -0.999 -1.2 -1.00 -1.000 -1.4 -1.5 -1.05 -0.5 -0.3 -0.1 0.0 0.1 0.3 0.5 minimally coupled 5e on CPL background Marco Raveri -1.001 -0.025 0.0 0.025 0.05 0.075 linear Omega on wCDM background -4.5 -3.5 -2.75 -2.0 -1.0 designer f(R) on wCDM background 51 Introduction DE/MG EFT approach Conclusions Phenomenology Cosmological background Linear scalar perturbations Linear tensor perturbations Non-linear perturbations Marco Raveri 52 Introduction DE/MG EFT approach Conclusions Cosmological background Complete freedom at the background level Marco Raveri 53 Introduction DE/MG EFT approach Conclusions Linear scalar perturbations Behavior is strongly model dependent. Very difficult (if not impossible) to get non-approximate and general analytic results Marco Raveri 54 Introduction DE/MG EFT approach Conclusions Modification of the ISW effect Modified CMB lensing Marco Raveri 55 Introduction DE/MG EFT approach Conclusions Modified growth of perturbations: Marco Raveri 56 Introduction DE/MG EFT approach Conclusions The price of modifying lensing… no GW’s here… Marco Raveri 57 Introduction DE/MG EFT approach Conclusions 10!1 104 c = 1.5 c = 1.0 c = 0.5 2 T 2 T 2 T 103 102 10!2 c = 1.5 c = 1.0 c = 0.5 10!3 5 Marco Raveri 10 2 T 2 T 2 T 10 50 100 l 1000 5 10 1 50 100 l 1000 10!1 2 l!l"1" CTT l # 2Π $ ΜK % 2 l!l"1" CBB l # 2Π $ ΜK % Linear tensor perturbations 58 Introduction DE/MG EFT approach Conclusions Non-linear perturbations [ arXiv:1611.07966 ] Marco Raveri 59 Introduction DE/MG EFT approach Conclusions EFTCAMB Patch of CAMB/CosmoMC: full perturbative Boltzmann-Einstein equations; No approximations: NO quasi-static, NO sub-horizon; Complete set of perturbative equations: include all second order EFT operators; Various expansion histories: LCDM, wCDM, CPL +… Pure EFT mode: study the underlying DE/MG theory through a parametrization of the EFT functions; Mapping EFT mode: study a single model. Built-in f(R), minimally coupled quintessence, Horava gravity. More to come very soon! Exploration of parameter space and comparison with cosmological datasets with a built in theoretical viability check. Marco Raveri 60 Introduction Marco Raveri DE/MG EFT approach Conclusions 61 Introduction DE/MG EFT approach Conclusions From the cosmology of a model to data constraints 5 10 50 100 (a) 1000 10 50 100 1000 (b) -3.0 P (arbitrary normalization) 5 (c) -4.5 -6.0 -7.5 -10 -8 -6 -4 -2 -9.0 -10 PLC PLC, BG Marco Raveri 2 P (arbitrary normalization) 2 -8 -6 -4 PLC, CMBL PLC, WiggleZ -2 -9.0 -7.5 -6.0 -4.5 -3.0 All combined Viability Prior 62 Introduction DE/MG EFT approach Conclusions CosmicFish Standalone code to perform Fisher matrix forecasts; Most of the cosmological observables of interest; State of the art algorithm and strongly optimized; Modern software design: fully modular, unit testing, complete documentation, …; Uses EFTCAMB to ensure wide coverage of DE/MG models; Marco Raveri 63 Introduction Marco Raveri DE/MG EFT approach Conclusions 64 Introduction DE/MG EFT approach Conclusions …to the future of a model Marco Raveri 65 Introduction DE/MG EFT approach Conclusions Join THE DARK SiDE rule the universe Marco Raveri 66 Introduction DE/MG EFT approach Conclusions Modern approaches to DE and MG phenomenology; Unify in a single box these two types of models; Possibly capture phenomenological features of models in the space of solutions to the CC problem; Use it to test gravity on cosmological scales if not possible; Gear them up to be stand the experimental challenge of the next decade. Marco Raveri 67
© Copyright 2025 Paperzz