Name___________________________ Date_____________ Notes and Classwork 2.2: Conditional Statement – logical statement with 2 parts – • _________________________________ • _________________________________ Can be written in If-then form • If _________________________, then _________________________________ Example – identify the hypothesis and the conclusion and write it in if-then form: You can’t teach an old dog new tricks If ___________________________________________________________________ Identify the hypothesis and the conclusion and rewrite it in if-then form: • It is time for dinner if it is 6 P.M. – • There are 12 eggs if the carton is full. – • If __________________________________________________________________ The measure of a straight angle is 180° – • If _________________________________________________________________ If__________________________________________________________________ The car runs when there is gas in the tank. – If ____________________________________________________________+____ Related Conditional Statements: – Conditional: if p, then q _____________________ – Converse: if q, then p ______________________ – Inverse: if not p, then not q ______________________ – Contrapositive: if not q, then not p _______________________ – Biconditional: If p q and q p, then it can be written as q if and only if p (shorthand without the if’s) ________________________ 1 Write in if-then form, the converse (CV), inverse (I), and the contrapositive (CP) and state whether each is always true (AT) or not always true (NAT) - false: • Driving too fast often results in accidents. If ___________________________________________________________ If ___________________________________________________________ CV If ____________________________________________________________ I If _____________________________________________________________ CP • Tourists at the Alamo are in Texas. If ___________________________________________________________ If ___________________________________________________________ CV If ____________________________________________________________ I If _____________________________________________________________ CP A biconditional is true when both p q and q p are true. A biconditional ______________ is a more concise way to say (p q) (q p). Example Create the converse and if they are both true, create the biconditional statement “If a polygon has three sides then it is a triangle” Converse: ______________________________________________________________ Biconditional: ____________________________________________________________ Practice – create the Converse and the Biconditional statement if the converse is true: “If two angles are supplementary, then their sum is 180°”. Converse: _______________________________________________________________ Biconditional: ____________________________________________________________ 2 For each statement, name the relationship (converse, inverse, contrapositive) of the second statement to the first. State whether the second is always true (AT) or not always true (NAT) assuming pq is true. 1. If I read the book, then I can do the homework. 2. If I cannot do the homework, then I did not read the book. 1. If it is Tuesday, I go to geometry. 2. If I go to geometry, it is Tuesday 1. If it is snowing, then it is cold. 2. If it isn’t snowing, then it isn’t cold. 3
© Copyright 2026 Paperzz