Do 2.3

Chapter 2
Section 2.3
Functions
Function Definition, Domain and Range and Notation
x 32
y 6 2 25
y 6
12
2
x
32
Domain of a Function:
(formula) The values for π‘₯ you can "plug into" the
formula.
0 ≀ 25 βˆ’ π‘₯ βˆ’ 3 2
25 ≀ π‘₯ βˆ’ 3 2
βˆ’5 ≀ π‘₯ βˆ’ 3 ≀ 5
βˆ’2 ≀ π‘₯ ≀ 8
(graph) Where the graph is above, below or on the xaxis. Looking at the graph it is the interval βˆ’2,8 .
12
10
4
25
10
8
8
6
6
4
4
2
2
2
4
6
8
Not a Function!
4
2
2
4
6
8
Is a Function!
A vertical line can only intersect
the graph once.
Any vertical line only intersects
the graph once.
When π‘₯ = 6 the value for 𝑦 can
be either 2 or 10.
When π‘₯ = 6 then 𝑦 must equal
10.
Range of a Function:
(graph) Where the graph is to the left, right or on the
y-axis. Looking at the graph it is the interval 6,11 .
Notation:
To say "y is a function of x" , y is the dependent
variable, x is the independent variable, we write:
𝑦=𝑓 π‘₯ .
𝑓 π‘₯ = 6 + 25 βˆ’ π‘₯ βˆ’ 3
2
π‘‘β„Žπ‘’π‘› 𝑓 6 = 10
Example 2.3.1:
If 𝑓 π‘₯ = π‘₯ 2 βˆ’ 3π‘₯ + 5 find each of the following: 𝑓 βˆ’2 , 𝑓
1
3
, 𝑓 3π‘₯ , and 𝑓 π‘₯ + 1 .
𝑓 βˆ’2 = βˆ’2 2 βˆ’ 3 βˆ’2 + 5 = 4 + 6 + 5 = 15
2
1
1
1
1
37
𝑓
=
βˆ’3
+5= βˆ’1+5=
3
3
3
9
9
𝑓 3π‘₯ = 3π‘₯ 2 βˆ’ 3 3π‘₯ + 5 = 9π‘₯ 2 βˆ’ 9π‘₯ + 5
𝑓 π‘₯ + 1 = π‘₯ + 1 2 βˆ’ 3 π‘₯ + 1 + 5 = π‘₯ 2 + 2π‘₯ + 1 βˆ’ 3π‘₯ βˆ’ 3 + 5 = π‘₯ 2 βˆ’ π‘₯ + 3
Example 2.3.2:
Express y as a function of x (i.e. 𝑦 = 𝑓 π‘₯ )where y is the bottom half of the parabola π‘₯ = 3 βˆ’ 𝑦 βˆ’ 2 2 . Find the domain, range
and compute the value of 𝑓 βˆ’6 .
4
π‘₯ =3βˆ’ π‘¦βˆ’2 2
π‘¦βˆ’2 2 =3βˆ’π‘₯
π‘¦βˆ’2=βˆ’ 3βˆ’π‘₯
(bottom half)
𝑦 =2βˆ’ 3βˆ’π‘₯
𝑓 π‘₯ =2βˆ’ 3βˆ’π‘₯
Domain:
0≀3βˆ’π‘₯
π‘₯≀3
Range:
𝑦≀2
3
Interval: βˆ’βˆž, 2
2
Interval: βˆ’βˆž, 3
𝑓 βˆ’6 = 2 βˆ’ 3 βˆ’ βˆ’6
=2βˆ’ 9
= βˆ’1
1
1
1
2
3
Increasing and Decreasing Intervals for a Function
10
Increasing on an Interval:
8
A function is increasing on an interval if as the values for x
increase the values for y also increase.
6
Graphically it means the graph goes "uphill" as you move
from left to right.
4
2
Decreasing on an Interval:
1
1
2
3
4
2
Increasing: 1,3
Decreasing: βˆ’βˆž, 1 ⋃ 3, ∞
5
A function is increasing on an interval if as the values for x
increase the values for y also increase.
Graphically it means the graph goes "downhill" as you move
from left to right.