Physics of CP Violation and Nagoya Physics

Events leading to proper
parameterization of CP violation
•
•
•
•
Discoveries before 1980
Discoveries after 1980
Mechanism of large CP violation
Recent developments
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
1962 Discovery of mixing angles
for two neutrinos
Assuming that p,n,Λ are bound states
of leptons and other fundamental particles,
Maki, Sakata, and Nakagawa stated
1   e cos    sin 
 2   e sin     cos 
Prog. Theoretical Physics 28 870, (1962)
before Cabibbo introduces the mixing angle for quarks
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
P
N,
Λ
charge +1
charge 0
s
+
0
K
d
K
u
η’
η π0
π―
ー
K
π+
ー0
K
Psychology of the times
Princeton 1965-1969
•
•
•
•
•
•
•
•
•
•
•
Goldberger
Wightman
Wigner
Wheeler
Fitch
Cronin
Adler
Weisberger
Schwarz
Gross
Callan
• Axiomatic Field Theory
• Finite energy sum rules
• Nonsense wrong
signiture fixed poles
• Tripple pomeron vertex
• Finite energy sumrules
for inclusive reactions
We construct a mathematical theory … , which may or may
not have anything to do with reality, find suitable algebraic
relations that hold in the model, postulate their validity, and
then throw away the model.
We may compare this process to a method sometimes
employed in French cuisine: a piece of pheasant meat is
cooked between two slices of veal, which are then discarded.
M. Gell-Mann p.198 The Eightfold Way
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
Niu’s one event 1971
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
u
c t










Vud Vus V
ub
Vcd Vcs V
cb
Vtd Vts Vtb









d 
 
s
 
b 
 
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
Lederman’s
shoulder
1970 Columbia


p  U     anything
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
1975
Discovery of D0 and D+
This discovery was before G. Goldhaber et.al PRL 37, 255(1976)
D+
 D
D0
Niu et. al. 14th Int. Cosmic Ray Conf. (Munich), 7, 2442 (1975)
Nagoya Discovery
 D0
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
Ups leon and shortly after
1976 Discovery of Υ(1S)
Discoveries before 1980
•
•
•
•
•
•
•
•
•
•
1956 Sakata model
1962 Two neutrinos with mass and mixing
1964 Quark model
1964 CP Violation in K    
1971 Nagoya discovery of charm
1973 KM model
1974 J/ψ
1975 D0 , D charm particles
1976 Υ(1S)
1980 Prediction of large CPV in B decays
Start of B physics
• Theorists discussed B mesons since
1976
• Ellis Gaillard Nanopoulos Rudaz 1977
• Bander Silverman Soni 1979
• Cater AIS 1980
• Discovery of Υ(4S) Phys. Rev. Lett. 45, 219–221 (1980)
[Issue 4 – 28 July 1980 ]
Pais Seminar
Pais-Treiman paper
CP Violation in Charmed Particles
Phys.Rev.D12:2744-2750,1975
There is a good news - and a bad news:
• Good news is that there is CP violation in
heavy meson decays
• Bad news is that it is very small
• They considered wrong asymmetries
Generalization of K decays
K1  pK K 0  qK K 0
K 2  pK K 0  qK K 0
pK 
qK 
1 
1 
2
1 
1 
2
( K L  l  l  )  ( K L  l  l  ) | pK |2  | qK |2





( K L  l  l )  ( K L  l  l ) | pK |2  | qK |2
( B 0  l  X )  ( B 0  l  X ) | pB |2  | qB |2

0

0

( B  l X )  ( B  l X ) | pB |2  | qB |2
2 Re 

1 |  |2
1  2i M12*
*

q

p
M 12 
*
M 12
i *
2 12
i
2 12

*
M 12
12
M 12 1  i 12
2 M
12
*
p 1   M 12
1  O


q 1   M 12 
 
12
M12
  ei 1  O


 
12
M12
( B 0  l  X )  ( B 0  l  X ) | pB |2  | qB |2

( B 0  l  X )  ( B 0  l  X ) | pB |2  | qB |2
O
 
12

M12
12
M12

mc2
mt2
2 Re 
1 |  |2
Imεis large!
Can we find an
observable related to Imε?
B is definitely different from K!
When I gave a seminar at Cornell, I saidεis
large and CP violation is large in B decays.
But I did not have an example to show it!
They asked me to come back in two months and
give another seminar.
I was really desperate to discover an effect!
*
p 1   M 12


 ei
q 1   M 12
How can we detect δ?
Discovery after 1980
• 1980 Υ(4S)
• 1981 Υ(4S)
BB*
• 1983 Longevity of B mesons
• 1986
• 1987
• 1991
• 1995
• 1997
π±π∓;
B-B mixing
Unitarity Triangle
b→ulν
b→sγ
B→K±π∓; K±K∓;
It turned out that it was just at the right mass.
Discovery after 1980
• 1980 Υ(4S)
• 1981 Υ(4S)
BB*
• 1983 Longevity of B mesons
• 1986 B-B mixing
• 1987 Unitarity Triangle
• 1991 b→ulν
• 1995 b→sγ
• 1997 B→K±π∓; K±K∓;
π±π∓;
Problem
Asymmetry vanishes for J=1 BB state
e e  B(t1 ) B (t2 )   K S

μ X
q 
asym  Im    sin[m(t1  t2 )]
p 
e e  (4S )  BB*  BB
S-Wave
q 
asym  Im    sin[m(t1  t2 )]
p 
Discovery after 1980
• 1980 Υ(4S)
• 1981 Υ(4S)
BB*
• 1983 Longevity of B mesons
• 1986
• 1987
B-B mixing
Unitarity Triangle
• 1991
b→ulν
• 1995
• 1997
b→sγ
B→K±π∓; K±K∓;
±
∓
1982 MAC-MARKII Discovery:
Longevity of B
B masons have to live for long time, otherwise we can not see CP violation
Discovery after 1980
• 1980 Υ(4S)
• 1981 Υ(4S)
BB*
• 1983 Longevity of B mesons
• 1986 B-B mixing
• 1987 Unitarity Triangle
• 1991 b→ulν
• 1995
• 1997
±
b→sγ
B→K±π∓; K±K∓;
∓
1986 Argus discovery of BB mixing
Best machine does not always win!
B mesons have to mix otherwise we can not see the indirect CP violation
Discovery after 1980
• 1980 Υ(4S)
• 1981 Υ(4S)
BB*
• 1983 Longevity of B mesons
• 1986 B-B mixing
• 1987 Unitarity Triangle
• 1991 b→ulν
• 1995
• 1997
±
b→sγ
B→K±π∓; K±K∓;
∓
Unitarity Triangle 1987
ππ
Bj notation
Rosner&AIS
Fermilab proeedings
VubVud
*
2
VtbVtd
1
3
VcbVcd
V cb V cd
*
 V ub V ud *  V tb V td *  0
*
*
K S
15% CP asymmetry

 1034

1000 times more than
what was available
Vub
Vcb
1

Discovery after 1980
• 1980 Υ(4S)
• 1981 Υ(4S)
BB*
• 1983 Longevity of B mesons
• 1986 B-B mixing
• 1987 Unitarity Triangle
• 1991 b→ulν
• 1995 b→sγ
• 1997 B→K±π∓; K±K∓;
π±π∓;
I knew that you need 3 generations
participating in CP violating decays
Only way for three generations to appear in K decay
b
c
u
W
d
For B decay, 3 generations participate in tree graph decays!
This came easy!
eiδ
B
A( B     )
π+ π -
B
A( B     )
 i A( B     ) 
Br ( B     )  Br ( B     )
 Im e
  
Br ( B     )  Br ( B     )
 A( B    ) 
But I new CLEO will not see this decay for a long time!
s
b
B
Can we find
large CP
asymmetry
in major decay
modes of B?
d
c
u
W
u
d
d
s
b
B
d
c
u
u
W
d
d
Final state is not CP eigenstate
eiδ
B
A( B  K S  X )
B
KS+X
A( B  K S  X )
Carter AIS 1980
Nothing was known
about the KM matrix
We thought 20 GeV
is almost ∞
Carter and AIS
PR D23 (1980)
Today’s values
s3  s2ei  Vcb
s1s3  Vub
s2  .02
| Vcb | A 2
| Vub | A 3
 1
Around 1985 we gave up CLEO and
started to discuss time dependence
e e  B(t1 ) B (t2 )   K S
μ  X
  
q 
asym 
 Im    sin[ m(t1  t2 )]
  
p 
Symmetric Collider
Asymmetric Collider
B   K S asymmetries discovered
July, 2000
0.40
sin 21  1.210.47
sin 21  0.25  0.22
Belle
Babar
Miracle of dice with God’s help
Where do we go from here?
10fb-1
21fb-1
The reason why experiments are
doing so well is that we asked for
10**34 - retrospect, we only
needed 10**33 to discover large
CP violation.
Piilonen
History of B0→+− decay
(C = A)
2.3s diff.
btw. Belle
and BaBar
Nishida
Milky Way
Piilonen
B  K decays
ACP ( K   )  0.093  0.015
Hazumi
Present situation
•
•
•
•
•
Experimentalists are impatient
New physics has not yet been discovered.
Lot more detailed studies remain
New physics should be at most 1% level
Must keep on going
35
10
The end
My friend and I