Investment decision in conditions of certainty 1/ Calculate the NPV for project A and project B for k = 10% (the cost of capital) C1 C2 C3 C4 C5 C6 NCFt 1 K 1 times 0 1 2 3 4 5 6 7 NCF of Project A -725 100 250 250 200 100 100 100 NCF of Project B -850 100 200 200 200 200 200 200 t 1 K t NPV n !!! Recall that NPV I 0 t 1 (C2×C4) -725 90.90909 206.6116 187.8287 136.6027 62.09213 56.44739 51.31581 1 0.909091 0.826446 0.751315 0.683013 0.620921 0.564474 0.513158 NCFt 1 K t NCFt ) 1 K t (C3×C4) -850 90.90909 165.2893 150.263 136.6027 124.1843 112.8948 102.6316 66.80739 32.77467 RV n n 1 K n t 0 NCFt 1 K t RV n 1 K n Investment decision in conditions of uncertainty 1/ Calculate the NPV with Certainty Equivalent Method for project A and project B for Risk Free Rate of Return Rf = 2.5% and Certainty Equivalent Coefficients αt in the table below. C1 C2 C3 E(CFt) of Project A E(CFt) of Project B C4 C5 Risk free 2.5% 1 times 0 -725 -850 Certainty Equivalent Coefficients αt 1 1 2 100 250 100 200 3 4 5 6 7 250 200 100 100 100 200 200 200 200 200 C6 C7 t E CFt 1 R 1 R f t t f t E CFt 1 R t f (C4×C3×C5) 1 (C4×C2×C5) -725 0.91928251 0.84508034 0.97561 0.951814 89.6861 201.0899 89.6861 160.8719 0.77686757 0.71416077 0.65651551 0.60352323 0.55480835 0.928599 0.905951 0.883854 0.862297 0.841265 180.3497 129.3989 58.0264 52.04162 46.6741 144.2798 129.3989 116.0528 104.0832 93.34819 32.2667 -12.2791 NPVadj1 n NPVadjusted I 0 t 1 t E CFt 1 R t f -850 1 !!! Recall that 2/ Calculate the NPV with Risk Adjusted Discounted Rate Method for project A and project B for Risk Free Rate of Return Rf = 2.5% , Risk premium of project α1 = 5% and Risk premium of institution α2 = 4% in the table below. k*=2.5%+5%+4% C1 C2 C3 E(CFt) of Project A E(CFt) of Project B -725 100 250 250 200 100 100 100 -850 100 200 200 200 200 200 200 C4 E CFt 1 K 1 1 K * t times 0 1 2 3 4 5 6 7 C5 n NPVadjusted I 0 t 1 E CFt 1 K 1 K -12.2790972 K * R f 1 2 * t and * t (C3×C4) -850 89.68609865 160.8719258 144.2797541 129.3988826 116.0528095 104.0832372 93.34819483 32.2667 E CFt NPVadj2 = NPVadj1 Some remarks: * t (C2×C4) -725 89.6861 201.0899 180.3497 129.3989 58.0264 52.04162 46.6741 1 0.896861 0.8043596 0.7213988 0.6469944 0.580264 0.5204162 0.466741 NPVadj2 !!! Recall that C6 1 R 1 K t t f * t 3/ Calculate the expected NPV with Statistical Techniques of Risk Analysis for project A and project B with Risk Free Rate of Return Rf = 2.5% per annum and the probability Pt over the period in the table below. We assume total independence between CF over the period. C1 C2 C4 C5 C6 C7 1 1 R f E CFt times 0 1 2 3 4 5 6 7 NCF of Project A -725 1000 2500 2500 2000 1000 1000 1000 n E ( NPV ) I 0 t 1 probability Pi 1 0.1 0.25 0.25 0.2 0.1 0.05 0.05 E CFt 1 0.97561 0.951814 0.928599 0.905951 0.883854 0.862297 0.841265 E(CFt) (C2×C4) -725 100 625 625 400 100 50 50 1225 1 1083.763 1 Rf t n V ( NPV ) ( NPV ) V ( NPV ) 2690349 1640.228 t 1 1 Rf t t (C6×C5) -725 97.561 594.834 580.375 362.380 88.385 43.115 42.063 1083.763 E CFt 2 1 Rf C8 E CFt 2 1 Rf (C2×C2×C4×C5×C×5) 525625 95181.43962 1415547.882 1347338.853 656597.2567 78119.84017 37177.79425 35386.35979 4190974.43 1083.763 2t CV ( NPV ) 2t 2 2690349 2 1640.228 1.34 1083.763 !!! To choose between projects we must calculate the risk associated for each them and the coefficient of variation. We repeat the same procedure for project B C1 C2 C4 C5 C6 C7 E CFt t 1 R f t times 0 1 2 3 4 5 6 7 total NCF of Project B -850 1000 2000 2000 2000 2000 2000 2000 n E ( NPV ) I 0 t 1 probability Pi 1 0.1 0.25 0.25 0.2 0.1 0.05 0.05 1 E CFt 1 0.97561 0.951814 0.928599 0.905951 0.883854 0.862297 0.841265 897.2752 1 Rf t 1 Rf 1 E(CFt) (C2×C4) -850 100 500 500 400 100 100 100 1050 n V ( NPV ) t 1 ( NPV ) V ( NPV ) 2742762 1656.129 (C6×C5) C7 E CFt 2 1 Rf 2t (C2×C2×C4×C5×C×5) -850 97.561 475.9072 464.2997 362.3803 176.7709 86.22969 84.12652 897.2752 E CFt 2 1 Rf 95181.44 905950.64 862296.87 656597.26 312479.36 148711.18 141545.44 3845262 897.2752 2 2t CV ( NPV ) 722500 2742762 1640.228 1.577 1083.763 Summarize E(NPV) σ(NPV) CV(NPV) Project A 1083.763 1640.228 1.34 Project B 897.2752 1656.129 1.577 !!! for two criteria we choose the project A 4/ Calculate the expected NPV with Statistical Techniques of Risk Analysis for project A and project B. We assume that we have 3 alternatives for A, 5 alternatives for B and the associated probabilities for each project and the life of them is one period with Risk Free Rate of Return Rf = 2.5% . We assume total independence between CF between alternatives. Project B I0 = 20000 pj CF1 0.2 30000 0.6 40000 0.2 55000 Project A I0 = 50000 pj CF1 0.1 50000 0.2 65000 0.3 70000 0.3 80000 0.1 90000 3 Solution: We can use the same techniques above (question 3). We change t by i the ith alternative. But we can use another easier method based on properties of variance. Project A pj 0.1 0.2 0.3 0.3 0.1 CF1 50000 65000 70000 80000 90000 pj×CF1 5000 13000 21000 24000 9000 pj×(CF1)2 250000000 845000000 1470000000 1920000000 810000000 Total 72000 5295000000 ECF1 72000 V CF1 5295000000 720002 111000000 E NPV I 0 E CF1 1 R f E NPV 50000 V NPV and 72000 14285.714 1 0.12 NPV 88488520.408 9406.834 V CF1 1 R f 2 V NPV CV NPV 111000000 1 0.122 88488520.408 9406.834 0.658 14285.714 Project B pj 0.2 0.6 0.2 CF1 30000 40000 55000 pj×CF1 6000 24000 11000 pj×(CF1)2 180000000 960000000 605000000 Total 41000 1745000000 ECF1 41000 V CF1 1745000000 410002 64000000 E NPV I 0 E CF1 1 R f E NPV 20000 and V NPV 41000 16607.143 1 0.12 NPV 51020408.16 7142.857 V CF1 1 R f 2 V NPV CV NPV 64000000 1 0.122 51020408.16 7142.857 0.430 16607.143 4 Summarize Project A 14285.714 9406.834 0.658 E(NPV) σ(NPV) CV(NPV) Project B 16607.143 7142.857 0.430 !!! for Two criteria we choose the project B 5/ Calculate the expected NPV with Statistical Techniques of Risk Analysis for Multi-period Project. We assume that we have 3 alternatives for each period and the associated probabilities. The life 3 periods with Risk Free Rate of Return Rf = 10% . We assume total independence between CF over time. Period 1 CF1 pj 12000 0.2 15000 0.3 17000 0.5 I 0 100000 . period 2 CF2 50000 60000 70000 period 3 pj 0.4 0.3 0.3 CF3 60000 85000 95000 pj 0.1 0.7 0.2 To calculate the expected value of NPV, the variance and coefficient of variation, we calculate the expected value of each cash flow and its variance like question 4 because the covariance between different CF is zero. Period 1 period 2 period 3 CF1 pj pjCF1 pj CF1^2 CF2 pj pjCF2 pj CF2^2 CF3 pj pjCF3 pj CF3^2 12000 0.2 2400 28800000 50000 0.4 20000 1000000000 60000 0.1 6000 360000000 15000 0.3 4500 67500000 60000 0.3 18000 1080000000 85000 0.7 59500 5057500000 17000 0.5 8500 144500000 70000 0.3 21000 1470000000 95000 0.2 19000 1805000000 total 1 15400 240800000 total 1 59000 3550000000 total 1 84500 7222500000 ECF1 15400 ECF 2 59000 V CF 2 69000000 V CF1 3640000 ECF 3 84500 V CF 3 82250000 E NPV 100000 15400 59000 84500 26246.431 2 1 0.1 1 0.1 1 0.13 V NPV 69000000 3640000 1 0.1 2 1 0.1 4 82250000 1 0.16 96564173.63 NPV 96564173.63 9826.707 5 6/ Calculate the expected NPV with Statistical Techniques of Risk Analysis for Multi-period Project. We assume that we have 3 alternatives and the associated probabilities for each them. The life is 3 periods with Risk Free Rate of Return Rf = 10% . We assume perfect dependence between CF over time. I 0 100000 Period 1 CF1 pj 12000 0.2 15000 0.3 17000 0.5 period 2 period 3 CF2 50000 60000 70000 pj 0.4 0.3 0.3 CF3 60000 85000 95000 pj 0.1 0.7 0.2 To calculate the expected value of NPV, the variance and coefficient of variation, we calculate the expected value of each cash flow and its variance like question 4 or 5 because the coefficient of correlation is equal 1 CF 1, CF 2 CF 1, CF 3 CF 2, CF 3 1 . ECF1 15400 ECF 2 59000 V CF 2 69000000 V CF1 3640000 E NPV 100000 NPV V CF 3 82250000 15400 59000 84500 26246.431 2 1 0.1 1 0.1 1 0.13 3640000 69000000 82250000 15413.221 2 1 0.1 1 0.1 1 0.13 شرح Explanations X ,Y ECF 3 84500 Cov X , Y 1 Cov X , Y X Y X Y V NPV V NPV V CF1 V CF 2 V CF 3 1 R f 1 R f 1 R f 2 4 6 2CovCF1, CF 2 1 R f 3 2CovCF1, CF 3 1 R f 4 2CovCF 2, CF 3 1 R f 5 2 CF1 2 CF 2 2 CF 3 2 CF1 CF 2 2 CF1 CF 3 2 CF 2 CF 3 1 R f 2 1 R f 4 1 R f 6 CF1 CF 2 CF 3 V NPV 2 3 1 R f 1 R 1 R f f 2 1 R f 3 1 R f 4 1 R f 5 and NPV CF1 CF 2 CF 3 2 3 1 R f 1 R f 1 R f 6 7/ Risk analysis in the event of a partial correlation between cash flows over time. Suppose project investment cost $ 70,000 and the distribution of cash flows as follows: Calculate the expected value, the variance and coefficient of variation of NPV. We assume that the risk-free rate of return is fixed at 7%. To resolve this issue we prefer to use the decision tree: Total = 1 25636.30 124751740.73 E(NPV) = 25636.30 V(NPV) = 124751740.73 σ (NPV) =11169.232 7 !!! The manager maintain the project if PNPV 0 0.95 If we assume that NPV N ENPV ;V NPV then we can calculate this probability. Step 1 : NPV N E NPV ;V NPV Z NPV E NPV N 0,1 V NPV Step 2: PNPV 0 0.95 PNPV 0 0.05 0 E NPV 0 25636.3 PNPV 0 P Z PZ 2.295 1.1% P Z 11169.232 V NPV Step3 : we maintain the project because 1.1% is less than 5%. 8 9
© Copyright 2026 Paperzz