Resistance to Accidental Explosions General principles NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 1 Outline Classification of explosion loads Dynamic response based on SDOF analogy Dynamic response charts ISO-damage (pressure-impulse) diagram Resistance curves for beams, girders and plates Ductility limitations Verification of simple design methods NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 2 Simple (SDOF) vs. advanced methods Impulsive asymptote 11 10 9 SDOF methods – Biggs’ (1964) (Elastic-plastic/rigid plastic methods, component analysis…) – Early Design – Screening of scenarios USFOS – Codes (NORSOK, IGN(UK)… Pressure F/R • 8 7 6 5 4 Iso-damage curve for ymax /yelastic = 10 Elastic-perfectly plastic resistance 3 2 1 Pressure asymptote 0 0 1 2 3 4 5 6 7 8 9 10 11 Impulse I/(RT) Iso-damage curve for Non-linear static and dynamic analysis • Advanced Methods – NLFEA blast loading – Large-scale simulations feasible – Detail Engineering – Critical Scenarios – Quality of analysis? NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 3 EXPLOSION Classification of response Impulsive domain I 2meq wmax 0 R wdw , td/T< 0.3 td I F t dt = impuls 0 Response independent of load magnitude Dynamic domain Quasi-static domainwmax 1 wmax Fmax 0 Fmax R w wmax NUS July 12-14, 2005 R wdw 0.3 < td/T < 3 3 < td/T Rise time small Rise time large Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 4 EXPLOSION Impulsive domain - td/T< 0.3 Feq(t) Y(td) Feq(t) meq keq(y) y(t) td R(y)= keq(y)·y • Conservation of momentum NUS July 12-14, 2005 Conservation of energy y max 1 1 I2 2 meq y t d R y dy 0 2 2 meq y td 0 1 y td m eq • t td 0 Feq t dt I meq I 2meq y max 0 R y dy Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 5 EXPLOSION Quasi-static domain Feq(t) Feq(t) meq keq(y) Y(td) - td/T> 3 R(y)= keq(y)·y Feq(t) y(t) trise y(t) td t Feq,max y max External work NUS July 12-14, 2005 y max 0 R y dy Strain energy t (2) (1) • Rise time small (1) td trise • Rise time large (2) Feq,max R y max Static solution Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 6 Explosion response -1 DOF analogy m y k y f (t ) Dynamic equilibrium (x) = displacement shape function y(t) = displacement amplitude m m x dx M ii 2 2 = generalized mass i f (t ) p (t ) x dx Fii = generalized load k EI, xx x dx = generalized elastic bending stiffness i 2 k 0 = generalized plastic bending stiffness (fully developed mechanism) k N, x x dx 2 = generalized membrane stiffness (fully plastic: N = NP) m = distributed mass Mi = concentrated mass p = explosion pressure Fi = concentrated load (e.g. support reactions) xi = position of concentrated mass/load NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 7 Dynamic equilibrium- alternative formulation klm My Ky F (t ) klm km kl = load-mass transformation factor m M f kl F km = mass transformation factor = load transformation factor M mdx M i = total mass F pdx Fi = total load i i K NUS July 12-14, 2005 k km = characteristic stiffness Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 8 EXPLOSION SDOF analogy – Biggs’ method f(t) f(t) t Feq(t) y Load-mass transformation factor NUS July 12-14, 2005 meq keq(y) Dynamic equilibrium: meq y t ceq y t k eq y Feq t y(t) klm My Ky F (t ) Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course ymax t 9 Development of explosion response charts klm,u Mu klm,c Mc y K y y F(t) F(t) R(y) Rel yel Displacement [m] 0,20 0,15 Fmax Explosion load history t y Dynamic equilibrium Solve dynamic equation – numerical integration Determine maximum deformation ymax Shell - plate Shell - stiffener beam Rel/Fmax = 0.31 0,10 Perform analysis for different duration and load amplitude 0,05 Rel/Fmax = 0.59 0,00 0,000 NUS July 12-14, 2005 0,005 0,010 Time [secs] 0,015 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 10 EXPLOSION Classification of resistance curves R R K1 K2 K1 R K2 K3 K1 K1 w Elastic K2 R w w Elastic-plastic (determinate) Elastic-plastic (indeterminate) R w Elastic-plastic with membrane K3 K2=0 Rel K1 Wel or yel NUS July 12-14, 2005 w Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 11 Explosion response chart maximum displacement versus load duration Governing parameters: Mechanisme resistance vs. maximum load Rel/Fmax Load duration vs. eigenperiod td/T Membrane stiffness, if any NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 12 EXPLOSION Dynamic response chart for pressure pulse-[J.M.Biggs] Triangular load - rise time = 0.3 td NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 13 Development of ISO-damage curves from dynamic response charts for a given pressure pulse Rel/Fmax =0.05 =0.1 = 0.3 100 = 0.5 = 0.6 = 0.7 Example yallow/yel =10 Rel/Fmax = 0.8 = 0.9 10 ymax/yel = 1.0 = 1.1 = 1.2 = 1.5 1 k3 = 0 k 3 = 0.1k 1 F R Fmax Rel k 3 = 0.2k 1 k 3 = 0.5k 1 k 3 = 0.5k 1 =0.2k 1 =0.1k 1 k1 td yel y 0.1 0.1 1 10 td/T NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 14 Development of ISO-damage curves from dynamic response charts for a given pressure pulse Rel/Fmax =0.05 =0.1 = 0.3 100 = 0.5 = 0.6 = 0.7 Example yallow/yel =10 Rel/Fmax = 0.8 = 0.9 10 ymax/yel = 1.0 = 1.1 = 1.2 = 1.5 1 k3 = 0 k 3 = 0.1k 1 F R Fmax Rel k 3 = 0.2k 1 k 3 = 0.5k 1 k 3 = 0.5k 1 =0.2k 1 =0.1k 1 k1 td yel y 0.1 0.1 1 td/T NUS July 12-14, 2005 Pressure = Fmax Impulse =1/2F Analysis and Design for Robustness of Offshore Structures maxt NUS – Keppel Short Course 10 td 15 EXPLOSION Iso-damage curve for yallow/yelastic =10. [W.Baker] Impulsive asymptote 11 10 9 Pressure F/R 8 7 6 5 Inadmissible domain 4 Iso-damage curve for ymax /yelastic = 10 Elastic-perfectly plastic resistance 3 2 1 Admissible domain Pressure asymptote 0 0 1 2 3 4 5 6 7 8 9 10 11 Impulse I/(RT) NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 16 EXPLOSION Resistance curves Beams and girders Tabulated values for elastic-plastic behaviour Resistance curves based on plastic thory Plates Elastic and plastic theory NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 17 Mass factor km Load case F=pL L Load-mass factor klm Uniform Concen- Uniform mass trated mass mass Resistance domain Load Factor kl Elastic 0.64 0.50 0.78 Plastic bending 0.50 0.33 0.66 Plastic membrane 0.50 0.33 0.66 Elastic 1.0 Concentrated mass Maximum resistance Rel Characteristic stiffness K 8Mp 384 EI L 5 L3 0.49 1.0 0.49 0 L 4NP L F L/2 L3 L L/2 Plastic bending Plastic membrane F/2 4Mp F/2 Elastic 1.0 1.0 0.87 1.0 1.0 0.76 0.33 0.33 0.52 1.0 1.0 0.87 0.33 4Mp 0.60 Plastic bending 1.0 Plastic membrane 1.0 1.0 1.0 0.56 0.56 1.0 1.0 0.56 4NP L 6M p 56.4 EI L L3 0.56 L 0.78 R 0.28 F 0 2 N P ymax L 0.525 R 0.025 F 0.52 R el 0.02 F 6M p L/3 L/3 L/3 2 N P ymax L 0.75 Rel 0.25 F L 0.33 0.39 R 0.11F 0.38 Rel 0.12 F 8Mp 48 EI 1.0 Dynamic reaction V 0 6N P L 3 N P ymax L Transformation factors for beams with various boundary and load conditions NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 18 Mass factor km Load case F=pL L Resistance domain Load Factor kl Elastic 0.53 Concentrated mass Load-mass factor klm Uniform Concen- Uniform mass trated mass mass 0.41 Maximum resistance Rel L Elastoplastic bending 0.64 0.50 0.78 8 M ps M Pm L Plastic bending 0.50 Plastic membrane 0.50 0.33 0.66 L/2 Elastic L3 384 EI 5 L3 307 EI L3 L Dynamic reaction V 0.36 R 0.14 F 0.39 Rel 0.11F 0.38 Rel 0.12 F 0 2 N p ymax 0.33 4NP L 0.66 4 M ps M Pm L/ 2 384 EI 12 M ps 0.77 8 M ps M Pm F Characteristic stiffness K 1.0 1.0 0.37 1.0 0.37 L 4 M ps M Pm Plastic bending 1.0 Plastic membrane 1.0 1.0 1.0 0.33 0.33 1.0 1.0 0.33 0.33 192 EI L3 L 0.71R 0.21F 0.75 Rel 0.25 F 0 L 4NP L 2 N P ymax L Transformation factors for beams with various boundary and load conditions NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 19 Mass factor km Load case Resistance Load domain Factor kl Elastic 080 Load-mass factor klm Concentrated mass Uniform Concenmass trated mass Uniform mass 0.64 0.41 0.51 0.80 Maximum resistance Characteristic linear stiffness Rel K1 V 9 M ps L F/2 6 M ps M Pm F/2 Elastoplastic L/3 L/3 L/3 0.87 0.76 0.52 0.87 0.60 bending L 6 M ps M Pm 260EI L3 1.0 0.56 1.0 0.56 0.48 R 0.02 F 56.4EI L3 0.52 Rel 0.02 F L 1.0 Dynamic reaction 0 0.52 Rel 0.02 F Plastic bending 1.0 1.0 0.56 1.0 0.56 6N P L 3 N P ymax L Plastic membrane New Revision II: Transformation factors for clamped beam with two concentrated loads NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 20 Mass factor km Load case F=pL V1 L Resistan ce domain Load Fact or kl Elastic 0.58 Concen -trated mass Load-mass factor k lm Unifor Concen- Unifor m mass trated m mass mass 0.45 Maximum resistance Rel Characterist ic stiffness K 185 EI 8 M ps 0.78 L Elastoplastic Bending V 0.64 0.50 0.78 2 4 M ps 2 M Pm L 4 M ps 2 M Pm Plastic bending 0.50 0.33 0.66 Plastic membra ne 0.50 0.33 0.66 L3 384 EI 3 5L 160 EI L3 Dynamic reaction V V1 0.26 R 0.12 F V2 0.43R 0.19 F 0.39 R 0.11F M Ps L L 0 4NP L 0.38 R 0.12 F M Ps L 2 N P y max L V1 0.25 R 0.07 F F V1 L/2 L/2 Elastic 1.0 1.0 0.43 1.0 0.43 Elastoplastic V 2 Bending 1.0 1.0 0.49 1.0 0.49 Plastic bending 1.0 Plastic membra ne 1.0 1.0 0.33 1.0 0.33 107 EI 16 M Ps 3L 2 M ps 2 M Pm L3 48 EI L 2 M ps 2 M Pm L3 1.0 0.33 1.0 0.78 R 0.28 F 106 EI L3 0 L F/2 V1 M Ps L 0.75 R 0.25 F M Ps L 4NP L 0.33 2 N P y max L 132 EI F/2 V2 0.54 R 0.14 F Elastic 0.81 0.67 0.45 0.83 0.55 Elastoplastic Bending V 2 0.87 0.76 0.52 0.87 0.60 6 M Ps L 2 M ps 3 M Pm L3 L 2 M ps 3 M Pm L/3 L/3 L/3 L3 56 EI 122 EI L3 V1 0.17 R 0.17 F V2 0.33R 0.33F 0.525 R 0.025 F M Ps L L Plastic bending Plastic membra ne 1.0 1.0 0.56 1.0 0.56 0 0.56 6N P L 0.52 Rel 0.02 F 1.0 1.0 0.56 1.0 M Ps L 3 N P y max L Transformation factors for beams with various boundary and load conditions NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 21 Ductility ratios ( Ref: Interim Guidance Notes) Table A.6-3 Ductility ratios beams with no axial restraint Boundary Load conditions Cross-section category Class 1 Class 2 Class 3 Cantilevered Concentrated Distributed 6 7 4 5 2 2 Pinned Concentrated Distributed 6 12 4 8 2 3 Fixed Concentrated Distributed 6 4 4 3 2 2 NUS July 12-14, 2005 Analysis and Design for Robustness of Offshore Structures NUS – Keppel Short Course 22
© Copyright 2026 Paperzz