ECON 5120: Panel data econometrics Seminar 3: October 2., 2007 Problem 3.1: Error autotocorrelation and heteroskedasticity Standard variance components model: yit k xit i uit , (0.1) uit IID(0, ), 2 it i uit , i IID(0, ), i 1,..., N ; t 1,..., T . 2 xit uit it , Rewriting the model in matrix form gives: yi eT k X i εi , εi eT i ui , i 1,..., N ε1 ,..., εN are uncorrelated and have zero expectation, with covariance matrix V (εi ) E(εi εi ) E (eT i ui )(eT i ui ) 2 (eT eT ) 2 IT . Model (0.1) can thus be written compactly as: (0.2) yi eT k X i i , i eT i ui IID(0T ,1 , T ) , i 1,..., N , where (0.3) 2 2 2 2 2 2 T T ( 2 , 2 ) 2 (eT eT ) 2 IT 2 2 Models with autocorrelation: Model A1: 2 2 2 2 it i uit , i IID(0, 2 ), uit ui ,t 1 it , 1, it i it xit IID(0, 2 ), i, t. Assume that the AR(1) process started infinetly long back in time. Then ut r 0 t r . r We derive the variance of it : Side 1 av 21 var( it ) var( i uit ) var i r 0 rt r 2 var r 0 rt r 2 r 0 ( r )2 var(t r ) 2 1 2 1 2 From Lillard and Willis (1978) p.9891, we know that 2 2 2 2 u 2 i j , t s 2 (1 ) 2 2 2 2 2 2 2 E( it js ) u 2 1 2 i j , t s 0 (1 2 ) 0 i j The first line is the variance, the second the covariance between inventions in different periods, for the same individual. Thus, the covariance of it is: cov( it , js ) 2 2 , i j, t s 0 (1 2 ) We can write the residual covariance matrix of the genuine disturbance, uit (ui1 ,..., uiT )´ : 1 2 2 * 1 2 T 1 1 2 1 . . T 1 . . 1 and the covariance matrix of it ( i1 ,..., iT )´ (i ,..., i )´(ui1,..., uiT )´ as: 2 2 1 2 2 2 1 2 2 T * 2 eT eT 2 2 1 2 2 2 T 1 1 2 2 2 2 2 1 2 1 2 2 2 1 2 2 2 . 2 1 2 2 T 1 2 1 2 2 2 . 2 1 2 . 2 1 2 . 2 2 1 2 Lillard, Lee A. and Robert J. Willis (1978). “Dynamic Aspects of Earning Mobility”. Econometrica, Vol. 46, No. 5, pp. 985-1012. 1 Side 2 av 21 In model A1, there is homoschedasiticity and autocorrelation, but not equicorrelation unless 0 . This can be seen from the fact that2: corr ( it , is ) 2 1 2 2 2 1 2 2 t s The correlation is independent of i but varies with t s for 0 . Model A2: it i uit , i IID(0, 2 ), uit ui ,t 1 it , 1, it i it xit (0, 2i ), i, t. We go through the same steps as for model A1, the only difference being that 2i is now individual specific (has subscript i). The aggregate covariance matrix is thus: 2i 2i 2i 2i 2 2 2 2 2 T 1 1 2 1 2 1 2 1 2 2 2i 2i 2 2 2 i 2 . 1 1 2 1 2 * 2 2 2 2 Ti i eT eT i i 2 2 2 2 i . 1 2 1 2 1 2 2 2 i 2 2 T 1 i . . 2 2 1 1 In this model, it is both heteroskedastic and autocorrelated. We now have: 2i 1 2 corr ( it , is ) 2 2 i 2 1 which varies with both i and t s for 0 . 2 2 Note: corr ( it , is ) cov( it , is ) st.dev( it ) * st.dev( is ) 2 t s t s 2 1 2 2 2 2 2 2 1 1 2 2 1 2 2 2 2 1 2 t s Side 3 av 21 Model A3: it i uit , i IID(0, 2 ), uit i ui ,t 1 it , i 1, it (0, 2i ), i it xit i, t. We go through the same steps as for models A1 and A2, the only difference being that now both 2i and i are individual specific (have subscript i). The aggregate covariance matrix is thus: 2i 2 1 i 2 2 2 i i 1 i 2 Ti i* 2 eT eT 2 2i 2 i 1 2 i 2 2 T 1 i i 1 i 2 2i 2i 2 2 i 1 i 2 1 2 2 2 2i 1 i 2 2i i 1 i 2 2 2 i i 2 2i 1 i 2 T 1 2i 1 i 2 . 2i 1 i 2 . . 2i 1 i 2 2 . 2 In this model, as in A2, it is both heteroskedastic and autocorrelated. We now have: corr ( it , is ) 2i 1 i 2 2 2 i 2 1 i 2 i t s which varies with both i and t s for 0 . To sum up, the models A1-A3 all have autocorrelation, and A2-A3 also have heteroskedasticity. However, none of them have equicorrelation, as the correlation of it varies with t s for 0 . Models with error heteroskedasticity: Model H1: i it i uit , (0, 2i ), i 1,..., N uit IID(0, 2 ) i it xit i, t. Side 4 av 21 The covariance matrix for this model is: V ( i ) 2i (eT eT ) 2 IT which can be written out just as (0.3), only with individual 2i . We thus have: 2i corr ( it , is ) 2 i 2 it in this model is heteroskedastic, and it is equicorrelated for individual i. Model H2: it i uit , i uit IID(0, 2 ), (0, i2 ) i 1,..., N i it xit i, t. The covariance matrix for this model is: V ( i ) 2 (eT eT ) i2 IT which can be written out just as (0.3), only with individual i2 . We thus have: corr ( it , is ) 2 2 i2 it in this model is heteroskedastic, and it is equicorrelated for individual i. Model H3: it i uit , i (0, 2i ), i 1,..., N uit (0, i2 ), i 1,..., N i it xit i, t. The covariance matrix for this model is: V ( i ) 2i (eT eT ) i2 IT which can be written out just as (0.3), only with individual 2i and i2 . We thus have: corr ( it , is ) 2i 2i i2 it in this model is heteroskedastic, and it is equicorrelated for individual i. All of the models H1-H3 have heteroskedastic disturbances, it ’s, which are equicorrelated for individual i. Would you consider any of these extensions as improvements of the model? That depends on the real structure of the data. For instance, there is no point in using an autocorrelation covariance matrix for estimation unless there actually is autocovariance in the disturbances. We lose more periods when we have to account for autocorrelation. Side 5 av 21 Problem 3.2 A: Instrument variables If we treat all variables as exogenous, we can use the one-stage within estimator. Xtreg We assume that the model can be written yit Yit X it i it = Z it u it i it = u it u it ~IID( 0, 2 ) . xtreg ln_wage age* ten not_s uni so, fe i(idcode) Fixed-effects (within) regression Group variable (i): idcode Number of obs Number of groups = = 19007 4134 R-sq: Obs per group: min = avg = max = 1 4.6 12 within = 0.1333 between = 0.2375 overall = 0.2031 corr(u_i, Xb) = 0.2074 F(6,14867) Prob > F = = 381.19 0.0000 -----------------------------------------------------------------------------ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------age | .0311984 .0033902 9.20 0.000 .0245533 .0378436 age2 | -.0003457 .0000543 -6.37 0.000 -.0004522 -.0002393 tenure | .0176205 .0008099 21.76 0.000 .0160331 .0192079 not_smsa | -.0972535 .0125377 -7.76 0.000 -.1218289 -.072678 union | .0975672 .0069844 13.97 0.000 .0838769 .1112576 south | -.0620932 .013327 -4.66 0.000 -.0882158 -.0359706 _cons | 1.091612 .0523126 20.87 0.000 .9890729 1.194151 -------------+---------------------------------------------------------------sigma_u | .3910683 sigma_e | .25545969 rho | .70091004 (fraction of variance due to u_i) -----------------------------------------------------------------------------F test that all u_i=0: F(4133, 14867) = 8.31 Prob > F = 0.0000 (We note that only 19007 obs are used in the regression, due to missing variables in UNION) The F test is a test for absence of fixed effects. We can assume fixed effects. We can make a plot to look at the residuals. First we predict Xb, We have named it “yhatt” We then compute the residuals: y- yhatt: We have named it “res”, or we can type: predict <varname>, ue Either way we obtain i vit , the combined residual. . predict yhatt . gen res= ln_wage- yhatt (or predict res_ ,ue) . hist res . hist res, normal . twoway (scatter res yhatt) (mspline res yhatt) . twoway (scatter res year) (mspline res year) This gives the plots below. By looking at the plot it seems that our model seems to fit assumptions on u it ~IID( 0, 2 ) Side 6 av 21 We can also predict the first differenced overall component = uit uit 1 , by typing: predict res2,e We then obtain these plots. IV-modell 2: xtivreg ln_wage age* not_s (tenure = south union), fe If we believe that tenure is an endogenous variable, we can try to handle this with instruments. It is suggested that we use union and south as instruments for tenure. We then need another specification of the model. 1) yit Yit X it i it = Z it i it u it = i it u it ~IID( 0, 2 ) X is still a vector of exogenous variables; Y is a vector of observations of endogenous variables, that are allowed to correlate with it . N is the number of observations, and n is the number of girls.(groups) We then use xtivreg which is a twostage estimator. First we estimate It is important to construct instruments that are strongly correlated with the endogenous variable, but not u it . We find that the correlation between u it and not_smsa is -0.1451 and between u it and union is 0,0792. The correlations between the endogenous variable and the instruments are -0.0266 and -0.1321. So they are not very good instruments. Side 7 av 21 . corr tenure south union (obs=19007) | tenure south union -------------+--------------------------tenure | 1.0000 south | -0.0266 1.0000 union | 0.1600 -0.1321 1.0000 . corr res3 not_smsa union (obs=19007) | res3 not_smsa union -------------+--------------------------res3 | 1.0000 not_smsa | -0.1451 1.0000 union | 0.0792 -0.0693 1.0000 IV-modell 3: xtivreg ln_wage age* not_s (tenure = south union), fe Fixed-effects (within) IV regression Group variable: idcode Number of obs Number of groups = = 19007 4134 R-sq: Obs per group: min = avg = max = 1 4.6 12 within = . between = 0.1304 overall = 0.0897 corr(u_i, Xb) = -0.6843 F(4138,14869) Prob > F = = 74.14 0.0000 -----------------------------------------------------------------------------ln_wage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------tenure | .2403531 .0373419 6.44 0.000 .1671583 .3135478 age | .0118437 .0090032 1.32 0.188 -.0058037 .0294912 age2 | -.0012145 .0001968 -6.17 0.000 -.0016003 -.0008286 not_smsa | -.0167178 .0339236 -0.49 0.622 -.0832123 .0497767 _cons | 1.678287 .1626657 10.32 0.000 1.359442 1.997132 -------------+---------------------------------------------------------------sigma_u | .70661941 sigma_e | .63029359 rho | .55690561 (fraction of variance due to u_i) -----------------------------------------------------------------------------F test that all u_i=0: F(4133,14869) = 1.44 Prob > F = 0.0000 -----------------------------------------------------------------------------Instrumented: tenure Instruments: age age2 not_smsa south union . correlate, _coef | tenure age age2 not_smsa _cons -------------+--------------------------------------------tenure | 1.0000 age | -0.3709 1.0000 age2 | -0.7337 -0.3543 1.0000 not_smsa | 0.4131 -0.1526 -0.3054 1.0000 _cons | 0.6172 -0.9515 0.0637 0.2079 1.0000 Note: corr(u_i, Xb) = -0.6843 is high, the model seems to be even worse than before (note: this does not happen if we use another instrument than union, for instance hours) Side 8 av 21 Looking at the residuals y y Z y we see that they do not seem to fit assumptions on IID (0,σ2). Our model specification with instrument variables does not improve our estimation. By using tenure as a endogenous variable, using south and union as instruments, we find that age and not_smsa are no longer significant. If we believe for instance from other studies that these should be significant, we should use a different model specification. IV-modell 4: We are asked to use a between estimation. After passing 1) trough the between estimator we are left with y i Z i i i 1 Ti Where wi wit for w y, Z , v Ti t 1 We similarly define X i as the matrix of instruments X it after they have passed trough the between transformation. These instruments are used to correct the biases on the coefficients. We do not succeed, we find that sd(u_i + avg(e_i.))= 0,4445007. The residual plots also show that the coefficients are not constant for different values of X . xtivreg ln_wage age* not_smsa (tenure= union south), be i(idcode) Between-effects IV regression: Group variable: idcode Number of obs Number of groups = = 19007 4134 R-sq: Obs per group: min = avg = max = 1 4.6 12 within = 0.0881 between = . overall = 0.1483 sd(u_i + avg(e_i.))= .4445007 chi2(4) Prob > chi2 = = 512.38 0.0000 -----------------------------------------------------------------------------ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------tenure | .1349486 .0102693 13.14 0.000 .1148212 .155076 age | .0424055 .0135488 3.13 0.002 .0158503 .0689607 age2 | -.0008035 .0002143 -3.75 0.000 -.0012235 -.0003835 not_smsa | -.2619405 .0162784 -16.09 0.000 -.2938457 -.2300354 _cons | .8430686 .2029267 4.15 0.000 .4453395 1.240798 -------------+---------------------------------------------------------------Instrumented: tenure Instruments: age age2 not_smsa union south Side 9 av 21 . correlate, _coef | tenure age age2 not_smsa _cons -------------+--------------------------------------------tenure | 1.0000 age | -0.1843 1.0000 age2 | 0.0832 -0.9898 1.0000 not_smsa | 0.0096 -0.0202 0.0156 1.0000 _cons | 0.1310 -0.9921 0.9767 0.0016 1.0000 IV-modell 5: If we believe, or are willing to assume, that all i ’s are uncorrelated with the other covariates, we can fit the random-effects model. There are two variance components to estimate, the variance of i and i . Since the variance components are unknown, the consistent estimates are required to implement feasible GLS. A consistent estimator is obtained by ˆ gls ( X ' 1 X ) 1 ( X ' 1 y) ui ' u j The residuals in estimating i , j are first obtained form OLS regression. T The estimates and their standard errors are calculated using 1 . (note: We are not quite sure about this, and hope that this can be commented on at the seminar.) xtivreg ln_wage age* not_s (tenure = south union), re i(idcode) . xtivreg ln_wage age* not_s (tenure = south union), re i(idcode) G2SLS random-effects IV regression Group variable: idcode Number of obs Number of groups = = 19007 4134 R-sq: Obs per group: min = avg = max = 1 4.6 12 within = 0.0620 between = 0.1745 overall = 0.1206 corr(u_i, X) = 0 (assumed) Wald chi2(4) Prob > chi2 = = 941.52 0.0000 Side 10 av 21 -----------------------------------------------------------------------------ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------tenure | .1772948 .0111724 15.87 0.000 .1553972 .1991924 age | .0191674 .0066388 2.89 0.004 .0061555 .0321792 age2 | -.0008496 .0001057 -8.04 0.000 -.0010567 -.0006425 not_smsa | -.2119932 .0130456 -16.25 0.000 -.2375622 -.1864243 _cons | 1.42761 .1037797 13.76 0.000 1.224205 1.631014 -------------+---------------------------------------------------------------sigma_u | .33156584 sigma_e | .63029359 rho | .21674808 (fraction of variance due to u_i) -----------------------------------------------------------------------------Instrumented: tenure Instruments: age age2 not_smsa south union . correlate, _coef 0 .5 Density 1 1.5 | tenure age age2 not_smsa _cons -------------+--------------------------------------------tenure | 1.0000 age | -0.2370 1.0000 age2 | -0.2199 -0.8895 1.0000 not_smsa | 0.0847 -0.0247 -0.0171 1.0000 _cons | 0.3147 -0.9874 0.8287 -0.0007 1.0000 -2 0 2 4 res2 3.2.B The STATA output from running the regressions can be found on the pages below. We have given the models numbers, and comment on all the models first. Model 3.2.B1. xtabond n w k ys yr1980-yr1984, lags(1) ............................................................................. 13 Model 3.2.B2 xtabond n w k ys yr1980-yr1984, lags(1) robust .................................................................. 14 Model 3.2.-B3 xtabond n w k ys yr1980-yr1984, lags(1) twostep............................................................... 14 Model 3.2.-B4 xtabond n w k ys yr1980-yr1984, lags(2) ............................................................................ 15 Model 3.2.-B5 xtabond n l(0/1).w l(0/1).k l(0/1).ys yr1980-yr1984, lags(1) ............................................... 16 Model 3.2.-B6 xtabond n l(0/1).w l(0/1).k l(0/1).ys yr1980-yr1984, lags(1) robust .................................... 17 Model 3.2.-B7 xtabond n l(0/1).w l(0/1).k l(0/1).ys yr1980-yr1984, lags(1) twostep .................................. 17 Model 3.2.-B8 xtabond n l(0/2).w l(0/2).k l(0/2).ys yr1980-yr1984, lags(2) ............................................... 18 Model 3.2.-B9 xtabond n l(0/2).w l(0/2).k l(0/2).ys yr1980-yr1984, lags(2) robust .................................... 19 Model 3.2.-B10 xtabond n l(0/2).w l(0/2).k l(0/2).ys yr1980-yr1984, lags(2) twostep ................................ 19 Dynamic panel data models allow past realisations of the dependent variable to affect its current level. 1) y it y it 1 i X it i it it i ,t 1 it , it ~ (0, 2 ) Side 11 av 21 i ~IID(o, 2i ) i and it are assumed to be independent for each i over all t. is a vector of parameters to be estimated Var( it 2i 1 i2 Arellano and Bond derive a generalized method-of-moments estimator for i , i using lagged levels of the dependent variable as instruments. This method assumes that there is no second-order autocorrelation in the it . xtabond includes the test for autocorrelation and the Sargan test of over-identifying restrictions for this model. We do not know the AR structure but it can be different for each individual ( it ~ (0, i2 ) ) and the variances ( i ~ IID (0, i2 ) ) may be different for different individuals. (se Model A1A3) First differencing of the equation removes the i and produces an equation that can be estimated using instrumental variables. In all the models we use the lagged dependent variable as an instrument variable. We have then lost the three first observations, to lags and differencing. Since x it contains only strictly exogenous covariates, xit will serve as its own instrument. The instrument matrix has one row for each time period we are instrumenting. yi 2 0 Zi . 0 0 0 yi3 0 . . 0 y i ,T 2 x i 4 x i 5 . xiT The difficult part is to define and implement this kind of instrument matrix for each i. We have tried different methods of this in model B1-B10, without much success. It might be that we have omitted variables, and that our attempts will be no use with this model. We have an unbalanced panel. This makes the algebra more difficult as we can not use kroneker products. But stata handles this. Missing observations are handled by dropping the rows for which there are no data, and filling inn zeroes in columns where missing data would be required. It=Index set of individuals which are observed in period t . t =1,….T Pi=Index set of periods where individual i is observed i =1,…N T the number of periods when at least one individual is observed. N is the number of individuals which are observed at least one period. Side 12 av 21 Vi define D as a (NxT) matrix whose element (i,t) is Dit = i 1,..N 1 if individual i is observed in period t 0 if individual i is not observed in period t t 1,...T In model Model 3.2.B1 the genuine disturbance follows an AR(1) prosess. Sargan test of over-identifying restrictions is rejected. Possibly due to heteroskedasticity. The presence of second order autocorrelation would imply that the estimates are inconsistent. Model 3.2.B2 is similar to B1 but we now have computed robust standard errors, taken into account that we suspect heteroskedasticity .We see that the coefficients are the same, as they should be, and the (robust) standard errors are larger. But we still suspect that the estimates are inconsistent, because of the presence of second order autocorr. Model 3.2.B3. Areallo Bond recommends one step, but we see that Sagran test is not rejected and the autocorrelation test says there is no first order autocorrelation. But the estimates may still be inconsistent, because of the presence of second order autocorrelation. We also note that several of the coeff. have changed, one has even switched sign. Model 3.2.-B4 We use two lags of the dependent variable, but it is not significant for lag 2. The other results do not differ much. Model 3.2.-B5 and B6 Here we use both the 1 difference and the lagged variable. The results do not differ much. Model 3.2.-B7-10 We now use two lags of the dependent variable. But the estimates may still be inconsistent, because of the presence of second order autocorrelation. xtabond n w k ys yr1980-yr1984, lags(1) Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 751 140 Wald chi2(9) = 645.91 Obs per group: min = avg = max = 5 5.364286 7 One-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .3566042 .0761519 4.68 0.000 .2073492 .5058592 w | D1. | -.5114253 .0526485 -9.71 0.000 -.6146145 -.4082361 k | D1. | .3086461 .0282417 10.93 0.000 .2532934 .3639988 ys | D1. | .5032803 .0958316 5.25 0.000 .3154537 .6911069 yr1980 | Side 13 av 21 D1. | .0195602 .0143097 1.37 0.172 -.0084863 .0476067 yr1981 | D1. | .0205486 .0226508 0.91 0.364 -.0238461 .0649432 yr1982 | D1. | .0432438 .0296175 1.46 0.144 -.0148054 .1012929 yr1983 | D1. | .0742359 .0370875 2.00 0.045 .0015457 .1469261 yr1984 | D1. | .0918581 .0444807 2.07 0.039 .0046775 .1790387 _cons | -.0148382 .0056797 -2.61 0.009 -.0259702 -.0037062 -----------------------------------------------------------------------------Sargan test of over-identifying restrictions: chi2(27) = 83.97 Prob > chi2 = 0.0000 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -2.79 Pr > z = 0.0052 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.72 Pr > z = 0.4745 Model 3.2.B2 xtabond n w k ys yr1980-yr1984, lags(1) robust Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 751 140 Wald chi2(9) = 433.33 Obs per group: min = avg = max = 5 5.364286 7 One-step results -----------------------------------------------------------------------------| Robust D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .3566042 .1371188 2.60 0.009 .0878562 .6253522 w | D1. | -.5114253 .1701517 -3.01 0.003 -.8449164 -.1779342 k | D1. | .3086461 .0534522 5.77 0.000 .2038817 .4134105 ys | D1. | .5032803 .1513647 3.32 0.001 .2066109 .7999496 yr1980 | D1. | .0195602 .013986 1.40 0.162 -.0078518 .0469722 yr1981 | D1. | .0205486 .0303305 0.68 0.498 -.038898 .0799952 yr1982 | D1. | .0432438 .0395268 1.09 0.274 -.0342273 .1207148 yr1983 | D1. | .0742359 .0459919 1.61 0.107 -.0159065 .1643784 yr1984 | D1. | .0918581 .0573505 1.60 0.109 -.0205468 .204263 _cons | -.0148382 .0061046 -2.43 0.015 -.0268031 -.0028734 -----------------------------------------------------------------------------Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -2.22 Pr > z = 0.0263 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.61 Pr > z = 0.5443 Model 3.2.-B3 xtabond n w k ys yr1980-yr1984, lags(1) twostep Arellano-Bond dynamic panel-data estimation Group variable (i): id Number of obs Number of groups = = 751 140 Wald chi2(9) = 618.30 Side 14 av 21 Time variable (t): year Obs per group: min = avg = max = 5 5.364286 7 Two-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .2651432 .0559895 4.74 0.000 .1554058 .3748807 w | D1. | -.4103142 .0430384 -9.53 0.000 -.494668 -.3259604 k | D1. | .2563969 .0351334 7.30 0.000 .1875368 .3252571 ys | D1. | .5436233 .0916815 5.93 0.000 .3639307 .7233158 yr1980 | D1. | .0203073 .0099064 2.05 0.040 .0008911 .0397236 yr1981 | D1. | .003441 .0192103 0.18 0.858 -.0342105 .0410925 yr1982 | D1. | .0051906 .0264286 0.20 0.844 -.0466085 .0569898 yr1983 | D1. | .0205109 .0318032 0.64 0.519 -.0418222 .082844 yr1984 | D1. | .0190986 .0360729 0.53 0.596 -.0516029 .0898001 _cons | -.0119679 .004482 -2.67 0.008 -.0207523 -.0031834 -----------------------------------------------------------------------------Warning: Arellano and Bond recommend using one-step results for inference on coefficients Sargan test of over-identifying restrictions: chi2(27) = 32.22 Prob > chi2 = 0.2242 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -1.24 Pr > z = 0.2165 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.32 Pr > z = 0.7473 Model 3.2.-B4 xtabond n w k ys yr1980-yr1984, lags(2) Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 611 140 Wald chi2(10) = 429.41 Obs per group: min = avg = max = 4 4.364286 6 One-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .3809966 .0913604 4.17 0.000 .2019335 .5600597 L2D. | -.0314535 .0372183 -0.85 0.398 -.1044 .041493 w | D1. | -.5582806 .0595507 -9.37 0.000 -.674998 -.4415633 k | D1. | .3604439 .0334723 10.77 0.000 .2948394 .4260483 ys | D1. | .506865 .1101652 4.60 0.000 .2909451 .7227848 yr1980 | D1. | .0058845 .0194738 0.30 0.763 -.0322833 .0440524 Side 15 av 21 yr1981 | D1. | -.0010127 .032771 -0.03 0.975 -.0652427 .0632172 yr1982 | D1. | .0158584 .0452833 0.35 0.726 -.0728953 .1046121 yr1983 | D1. | .0370505 .0581743 0.64 0.524 -.0769689 .15107 yr1984 | D1. | .0427605 .071393 0.60 0.549 -.0971672 .1826881 _cons | .0009947 .0124716 0.08 0.936 -.0234491 .0254385 -----------------------------------------------------------------------------Sargan test of over-identifying restrictions: chi2(25) = 74.97 Prob > chi2 = 0.0000 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -3.13 Pr > z = 0.0017 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.39 Pr > z = 0.6973 Model 3.2.-B5 xtabond n l(0/1).w l(0/1).k l(0/1).ys yr1980-yr1984, lags(1) Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 751 140 Wald chi2(12) = 813.95 Obs per group: min = avg = max = 5 5.364286 7 One-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .5630709 .1094238 5.15 0.000 .3486042 .7775376 w | D1. | -.5534161 .0561889 -9.85 0.000 -.6635442 -.4432879 LD. | .3098602 .0751487 4.12 0.000 .1625714 .4571489 k | D1. | .3063797 .0297639 10.29 0.000 .2480435 .3647159 LD. | -.0522857 .0503968 -1.04 0.300 -.1510616 .0464901 ys | D1. | .6228309 .1195031 5.21 0.000 .3886092 .8570526 LD. | -.597117 .143242 -4.17 0.000 -.8778661 -.3163679 yr1980 | D1. | .0044292 .0156642 0.28 0.777 -.026272 .0351304 yr1981 | D1. | -.0377724 .0244028 -1.55 0.122 -.085601 .0100561 yr1982 | D1. | -.0710787 .032883 -2.16 0.031 -.1355282 -.0066292 yr1983 | D1. | -.0812401 .0425751 -1.91 0.056 -.1646857 .0022055 yr1984 | D1. | -.080054 .0513176 -1.56 0.119 -.1806347 .0205267 _cons | .0050601 .0078047 0.65 0.517 -.0102369 .020357 -----------------------------------------------------------------------------Sargan test of over-identifying restrictions: chi2(27) = 77.00 Prob > chi2 = 0.0000 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -3.39 Pr > z = 0.0007 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -1.23 Pr > z = 0.2203 . Side 16 av 21 Model 3.2.-B6 xtabond n l(0/1).w l(0/1).k l(0/1).ys yr1980-yr1984, lags(1) robust Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 751 140 Wald chi2(12) = 624.34 Obs per group: min = avg = max = 5 5.364286 7 One-step results -----------------------------------------------------------------------------| Robust D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .5630709 .1197828 4.70 0.000 .3283009 .7978409 w | D1. | -.5534161 .1772358 -3.12 0.002 -.9007918 -.2060403 LD. | .3098602 .1202698 2.58 0.010 .0741357 .5455846 k | D1. | .3063797 .0547069 5.60 0.000 .1991562 .4136032 LD. | -.0522857 .0679217 -0.77 0.441 -.1854099 .0808384 ys | D1. | .6228309 .1694083 3.68 0.000 .2907968 .954865 LD. | -.597117 .1872489 -3.19 0.001 -.9641182 -.2301159 yr1980 | D1. | .0044292 .0144535 0.31 0.759 -.023899 .0327575 yr1981 | D1. | -.0377724 .0260604 -1.45 0.147 -.0888499 .013305 yr1982 | D1. | -.0710787 .0357855 -1.99 0.047 -.141217 -.0009405 yr1983 | D1. | -.0812401 .0470945 -1.73 0.085 -.1735437 .0110635 yr1984 | D1. | -.080054 .0564116 -1.42 0.156 -.1906187 .0305108 _cons | .0050601 .0094224 0.54 0.591 -.0134075 .0235276 -----------------------------------------------------------------------------Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -3.23 Pr > z = 0.0012 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -1.25 Pr > z = 0.2099 Model 3.2.-B7 xtabond n l(0/1).w l(0/1).k l(0/1).ys yr1980-yr1984, lags(1) twostep Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 751 140 Wald chi2(12) = 1060.48 Obs per group: min = avg = max = 5 5.364286 7 Two-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .4670255 .0745046 6.27 0.000 .3209992 .6130518 w | D1. | -.4870518 .0470883 -10.34 0.000 -.5793432 -.3947605 LD. | .2396211 .0611649 3.92 0.000 .1197401 .3595021 k | D1. | .2229986 .0403502 5.53 0.000 .1439136 .3020836 Side 17 av 21 LD. | .0524942 .0500748 1.05 0.294 -.0456507 .1506391 ys | D1. | .600489 .1031834 5.82 0.000 .3982532 .8027247 LD. | -.4223655 .1189128 -3.55 0.000 -.6554304 -.1893007 yr1980 | D1. | .0028122 .0107633 0.26 0.794 -.0182834 .0239079 yr1981 | D1. | -.0430203 .0201913 -2.13 0.033 -.0825945 -.0034462 yr1982 | D1. | -.0651432 .0270214 -2.41 0.016 -.1181041 -.0121823 yr1983 | D1. | -.0671289 .0310614 -2.16 0.031 -.1280081 -.0062497 yr1984 | D1. | -.0738373 .0354618 -2.08 0.037 -.1433411 -.0043335 _cons | .0007818 .0053805 0.15 0.884 -.0097637 .0113274 -----------------------------------------------------------------------------Warning: Arellano and Bond recommend using one-step results for inference on coefficients Sargan test of over-identifying restrictions: chi2(27) = 37.14 Prob > chi2 = 0.0925 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -2.55 Pr > z = 0.0108 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -1.02 Pr > z = 0.3076 Model 3.2.-B8 xtabond n l(0/2).w l(0/2).k l(0/2).ys yr1980-yr1984, lags(2) Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 611 140 Wald chi2(16) = 549.88 Obs per group: min = avg = max = 4 4.364286 6 One-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .7590458 .1534595 4.95 0.000 .4582706 1.059821 L2D. | -.1182499 .0491858 -2.40 0.016 -.2146523 -.0218474 w | D1. | -.6264705 .0683354 -9.17 0.000 -.7604053 -.4925357 LD. | .4450418 .1093473 4.07 0.000 .2307251 .6593584 L2D. | -.1459958 .0759505 -1.92 0.055 -.294856 .0028644 k | D1. | .3552865 .0379609 9.36 0.000 .2808846 .4296884 LD. | -.0810551 .0601376 -1.35 0.178 -.1989226 .0368124 L2D. | -.0184798 .0422759 -0.44 0.662 -.101339 .0643794 ys | D1. | .6353047 .1386783 4.58 0.000 .3635001 .9071092 LD. | -.8009587 .1938173 -4.13 0.000 -1.180834 -.4210837 L2D. | .2040576 .1563103 1.31 0.192 -.102305 .5104202 yr1980 | D1. | .0108957 .0221529 0.49 0.623 -.0325231 .0543146 yr1981 | D1. | -.0227497 .0370657 -0.61 0.539 -.0953972 .0498978 yr1982 | D1. | -.0338001 .0509725 -0.66 0.507 -.1337044 .0661041 yr1983 | D1. | -.0194175 .0673381 -0.29 0.773 -.1513978 .1125628 yr1984 | Side 18 av 21 D1. | -.0011615 .084187 -0.01 0.989 -.166165 .1638419 _cons | -.0004955 .0150878 -0.03 0.974 -.0300669 .029076 -----------------------------------------------------------------------------Sargan test of over-identifying restrictions: chi2(25) = 59.25 Prob > chi2 = 0.0001 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -4.26 Pr > z = 0.0000 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.11 Pr > z = 0.9096 Model 3.2.-B9 xtabond n l(0/2).w l(0/2).k l(0/2).ys yr1980-yr1984, lags(2) robust Arellano-Bond dynamic panel-data estimation Group variable (i): id Time variable (t): year Number of obs Number of groups = = 611 140 Wald chi2(16) = 647.69 Obs per group: min = avg = max = 4 4.364286 6 One-step results -----------------------------------------------------------------------------| Robust D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .7590458 .1341298 5.66 0.000 .4961561 1.021935 L2D. | -.1182499 .0457147 -2.59 0.010 -.2078491 -.0286506 w | D1. | -.6264705 .1906682 -3.29 0.001 -1.000173 -.2527678 LD. | .4450418 .1795079 2.48 0.013 .0932128 .7968707 L2D. | -.1459958 .0873153 -1.67 0.095 -.3171306 .0251389 k | D1. | .3552865 .0601116 5.91 0.000 .2374698 .4731031 LD. | -.0810551 .0744821 -1.09 0.276 -.2270374 .0649272 L2D. | -.0184798 .032538 -0.57 0.570 -.0822531 .0452934 ys | D1. | .6353047 .1773702 3.58 0.000 .2876654 .9829439 LD. | -.8009587 .262686 -3.05 0.002 -1.315814 -.2861035 L2D. | .2040576 .1642452 1.24 0.214 -.117857 .5259722 yr1980 | D1. | .0108957 .0175574 0.62 0.535 -.0235161 .0453075 yr1981 | D1. | -.0227497 .0312617 -0.73 0.467 -.0840216 .0385222 yr1982 | D1. | -.0338001 .041608 -0.81 0.417 -.1153503 .0477501 yr1983 | D1. | -.0194175 .0558735 -0.35 0.728 -.1289274 .0900925 yr1984 | D1. | -.0011615 .073711 -0.02 0.987 -.1456325 .1433095 _cons | -.0004955 .0126406 -0.04 0.969 -.0252707 .0242797 -----------------------------------------------------------------------------Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -3.95 Pr > z = 0.0001 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.10 Pr > z = 0.9206 Model 3.2.-B10 xtabond n l(0/2).w l(0/2).k l(0/2).ys yr1980-yr1984, lags(2) twostep Arellano-Bond dynamic panel-data estimation Group variable (i): id Number of obs Number of groups = = 611 140 Wald chi2(16) = 1059.42 Side 19 av 21 Time variable (t): year Obs per group: min = avg = max = 4 4.364286 6 Two-step results -----------------------------------------------------------------------------D.n | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------n | LD. | .7219585 .0872442 8.28 0.000 .550963 .892954 L2D. | -.0968684 .0277448 -3.49 0.000 -.1512472 -.0424896 w | D1. | -.5542483 .0568186 -9.75 0.000 -.6656107 -.4428859 LD. | .4028884 .0935179 4.31 0.000 .2195968 .5861801 L2D. | -.1332653 .053101 -2.51 0.012 -.2373413 -.0291892 k | D1. | .2791604 .0455152 6.13 0.000 .1899522 .3683685 LD. | -.0196619 .0552974 -0.36 0.722 -.1280427 .0887189 L2D. | -.0470922 .0263051 -1.79 0.073 -.0986492 .0044649 ys | D1. | .5826981 .1170406 4.98 0.000 .3533028 .8120935 LD. | -.6633483 .143779 -4.61 0.000 -.94515 -.3815466 L2D. | .2129541 .119221 1.79 0.074 -.0207148 .4466229 yr1980 | D1. | .004616 .0132031 0.35 0.727 -.0212616 .0304936 yr1981 | D1. | -.0434272 .0247054 -1.76 0.079 -.091849 .0049945 yr1982 | D1. | -.0524147 .0323349 -1.62 0.105 -.1157899 .0109604 yr1983 | D1. | -.0320466 .0419099 -0.76 0.444 -.1141886 .0500954 yr1984 | D1. | -.0347231 .0531522 -0.65 0.514 -.1388994 .0694532 _cons | .0022866 .0090722 0.25 0.801 -.0154946 .0200678 -----------------------------------------------------------------------------Warning: Arellano and Bond recommend using one-step results for inference on coefficients Sargan test of over-identifying restrictions: chi2(25) = 31.68 Prob > chi2 = 0.1673 Arellano-Bond test that average autocovariance in residuals of order 1 is 0: H0: no autocorrelation z = -3.48 Pr > z = 0.0005 Arellano-Bond test that average autocovariance in residuals of order 2 is 0: H0: no autocorrelation z = -0.25 Pr > z = 0.8048 -2 -2 .3 -4 .2 -4 .1 1976 1978 1980 year 1982 1984 -1 0 Density 0 0 .4 2 2 .5 Looking at the residuals=predicted_y - y, it does not seem like we can assume standard assumptions of normality and constant variance. -4 -2 0 res 2 Median spline -.5 0 Linear prediction res res Median spline . correlate, _coef | | LD. n L2D. n D. w LD. w L2D. w D. k LD. k L2D. k Side 20 av 21 .5 -------------+-----------------------------------------------------------------------n | LD. | 1.0000 L2D. | -0.4966 1.0000 w | D1. | 0.0185 -0.2676 1.0000 LD. | 0.4882 -0.0882 -0.7629 1.0000 L2D. | -0.1588 -0.0786 0.6073 -0.5442 1.0000 k | D1. | -0.0416 -0.0503 -0.0785 0.1200 0.0040 1.0000 LD. | -0.5603 0.2779 0.0322 -0.3463 0.0884 -0.6392 1.0000 L2D. | -0.2603 -0.2597 0.0791 -0.2135 -0.0362 0.2655 -0.1719 1.0000 ys | D1. | 0.0966 -0.0180 -0.5238 0.5203 -0.1663 0.0837 -0.1507 -0.0715 LD. | -0.3557 -0.0026 0.7719 -0.8535 0.5145 -0.0846 0.2683 0.2198 L2D. | 0.1330 0.0324 -0.5510 0.5372 -0.5240 0.0052 -0.1195 -0.2073 yr1980 | D1. | -0.0800 0.2176 -0.3169 0.1438 -0.3610 0.0955 -0.0237 0.0962 yr1981 | D1. | -0.0505 0.1136 -0.3418 0.2121 -0.4099 0.1523 -0.0725 0.1953 yr1982 | D1. | -0.0930 0.1934 -0.2635 0.0739 -0.4432 0.0434 0.0826 0.0797 yr1983 | D1. | -0.0177 0.1196 -0.1840 -0.0008 -0.4918 -0.0791 0.0910 0.0821 yr1984 | D1. | -0.0732 0.1882 -0.3305 0.0932 -0.5857 -0.0790 0.1422 0.0951 _cons | 0.1179 -0.2728 0.2353 -0.0558 0.5535 0.2314 -0.2538 -0.0425 | D. LD. L2D. D. D. D. D. D. | ys ys ys yr1980 yr1981 yr1982 yr1983 yr1984 -------------+-----------------------------------------------------------------------ys | D1. | 1.0000 LD. | -0.6909 1.0000 L2D. | 0.1428 -0.6316 1.0000 yr1980 | D1. | 0.3594 -0.2632 0.1602 1.0000 yr1981 | D1. | 0.3682 -0.1718 0.0343 0.8633 1.0000 yr1982 | D1. | 0.0774 -0.0219 0.1796 0.8038 0.8670 1.0000 yr1983 | D1. | -0.1406 0.0445 0.2605 0.6932 0.7232 0.9192 1.0000 yr1984 | D1. | -0.1235 -0.0656 0.3313 0.6807 0.6959 0.8886 0.9577 1.0000 _cons | 0.2124 0.0330 -0.2920 -0.6376 -0.6224 -0.8055 -0.8860 -0.9200 | | _cons -------------+--------_cons | 1.0000. Side 21 av 21
© Copyright 2026 Paperzz