ΠE∆IA B 17/02/2016 Θµα 1 (α) λ ln Φ(x, y, z) = 4π0 ( ) (x + a)2 + (y − b)2 (x − a)2 + (y + b)2 [(x − a)2 + (y − b)2 ] [(x + a)2 + (y + b)2 ] x, y ≥ 0. Potential Φ (x,y) 4 3.5 3 y 2.5 2 1.5 1 0.5 0 0 1 2 x 3 4 Figure 1: Potential distribution for a = b = 1 m and λ/0 = 1 V. (β) ~ = E λ (x − a)îx + (y − b)îy λ (x + a)îx + (y − b)îy − + 2 2 2π0 (x − a) + (y − b) 2π0 (x + a)2 + (y − b)2 λ (x + a)îx + (y + b)îy λ (x − a)îx + (y + b)îy − 2 2 2π0 (x + a) + (y + b) 2π0 (x − a)2 + (y + b)2 (γ) σ(x = 0, y ≥ 0) = λa −1 1 + π a2 + (y − b)2 a2 + (y + b)2 1 Red=Field Lines, Blue=Equal Potential −− λ = 1, a = 1, b = 1 4 3.5 3 y 2.5 2 1.5 1 0.5 0 0 1 2 x 3 4 Figure 2: Electric field lines (red) and equipotential lines (blue) for a = b = 1 m and λ/0 = 1 V. 0 Charge Density, σ(y) −0.05 −0.1 −0.15 −0.2 −0.25 −0.3 −0.35 0 0.5 1 1.5 2 y 2.5 3 3.5 4 Figure 3: Surface charge density at x = 0 grounded plane, for a = b = 1 m and λ/0 = 1 V. 2 Θµα 2 (α) Φ1 (z) = Φ2 (z) = P0 2 1 P0 z + V0 − d z, 20 d ` 20 1 P0 P0 V0 − d z+ d, ` 20 20 0 ≤ z ≤ d, d ≤ z ≤ `. (β) ~ 1 = − P0 z + 1 V0 − P0 d îz , 0 ≤ z ≤ d, E d ` 2 0 0 ~ 2 = − 1 V0 − P0 d îz , E d ≤ z ≤ `, ` 20 ~ 1 = − 0 V0 − P0 d îz , D 0 ≤ z ≤ d, ` 20 ~ 2 = − 0 V0 − P0 d îz , D d ≤ z ≤ `. ` 20 (γ) ρb = − P0 , d σb (z = 0+ ) = 0, σb (z = d− ) = P0 , 0 P0 V0 − d , ` 20 0 P0 σ(z = `+ ) = + V0 − d . ` 20 σ(z = 0− ) = − (δ) Lw P0 d 1 C = C(V0 ) = 0 1− , ` 20 V0 3 Normalized Capacitance, C/C0 1.5 1 0.5 0 0 0.5 1 1.5 Normalized Voltage, V0/VF 2 2.5 Figure 4: Normalized capacitance C/C0 (C0 = 0 Lw/`) as a function of the normalized voltage V0 /VF (VF = P0 d/20 ). 4 Θµα 3 µ0 a2 L12 (Θ) = L21 (Θ) = 4 ( " b cos Θ h sin Θ + (c/2) h sin Θ − (c/2) − 2 2 2 1/2 h cos Θ + (b/2) [h2 + (c/2)2 + (b/2)2 + hc sin Θ] [h2 + (c/2)2 + (b/2)2 − hc sin Θ]1/2 (c b/2) cos Θ + [h2 + (c/2)2 + hc sin Θ] [h2 + (b/2)2 + (c/2)2 + hc sin Θ]1/2 + (c b/2) cos Θ [h2 + (c/2)2 − hc sin Θ] [h2 + (b/2)2 + (c/2)2 − hc sin Θ]1/2 5 ) # Θµα 4 (α) Φ(x, y) = Φ(x, y) = ∞ X n=1 ∞ X An ekn x cos(kn y), (x < 0), An e−kn x cos(kn y), (x > 0), n=1 1 2σaΛ π sin n , 2 2 1 + 2 n π 2 2π = n . Λ An = kn (β) ~ = E ~ = E ( − ∞ X kn x An kn e ) cos(kn y) îx + n=1 (∞ X ) An kn e−kn x cos(kny) îx + n=1 ( ∞ X kn x An kn e ) (x < 0), ) (x < 0). sin(kn y) îy n=1 (∞ X An kn e−kn x sin(kn y) îy n=1 (γ) Φ(x = 0, y) = ∞ X An cos(kny). n=1 Potential Φ (x,y) 0.5 0.4 0.3 0.2 y 0.1 0 −0.1 −0.2 −0.3 −0.4 −0.5 −0.6 −0.4 −0.2 0 x 0.2 0.4 0.6 Figure 5: Sample electric potential visualization for one period for Λ = 1,m, σa Λ/0 = 1. 6 Red=Field Lines, Blue=Equal Potential −− L = 1, σ /ε = 1 0.3 0.3 0.2 0.2 0.1 0.1 0 0 −0 . −0 0 x −0.5 −0.6 0.5 101 −0.4 −0.2 0 x 0.2 32 0.0010132 −0 .0010132 32 −0.5 −0.5 0.0 0.0 2 0.0010132 1013−0.0010132 −00.0010132 .010132 −0.0010132 6 32 39− 01 30 0.07 .01 .0 −0 09 0 − 25 01 −0.4 6 9 03 03 0. 01 −0.4 2 . −0 −0.3 10 13 6 39 30 .0 −0 61 6 50 .0 −0.3 0. 0 1 −0.2 .0010132 −0 0.0010132 −0 −0.2 2 13 10 0.0 61 06 05 0. 396 0 03 0. −0.1 32 −0.0010132 0.0010132 066 y 01 −0.1 5 92 70 .0 0 39 − 6 010132 −0. −0.0010132 0.0010132 0.0101 0.0 32 30 39 6 0.070925 03 0 .01 −0 .0 10 13 2 0.4 −0 .0 50 6 −0 61 .0 30 39 0.4 0 .0 5 y 0.5 6 Equipotential Lines a 0 0.5 0.4 0.6 Figure 6: Equipotential lines (blue) and electric field lines (red) for one period Λ = 1,m, σa Λ/0 = 1. L = 1, σ /ε = 1 a 0 Normalized Potential at x=0, Φ(y)/Φ0 0.1 0.08 0.06 0.04 0.02 0 −0.02 −0.04 −0.06 −0.08 −0.1 −2 −1.5 −1 −0.5 0 0.5 x coordinate 1 1.5 2 Figure 7: Normalized electric potential Φ/Φ0 (Φ0 = σaΛ/0 ) at x = 0 for four periods for Λ = 1,m, σa Λ/0 = 1. 7
© Copyright 2024 Paperzz