Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi DEMO 2 - 09 March, 2015 Institute of Structural Engineering Identification Methods for Structural Systems 2DOF system Two Degree of Freedom system (2dof) x2(t) F(t) m2 EIb H EIc EIc c x1(t) m1 EIb H EIc EIc c L Institute of Structural Engineering Identification Methods for Structural Systems 2DOF System – State Space representation 2DOF system F1 ( t ) k1 c1 k2 ( x2 − x1 ) m1 m2 c2 ( x2 − x1 ) c1 x1 c1 x1 ( t ) F2 ( t ) k2 ( x2 − x1 ) k1 x1 m2 m1 F1 ( t ) FBD F2 ( t ) k2 c2 ( x2 − x1 ) (Lumped Mass System) x2 ( t ) The equations of motion can be written as m1 ẍ1 + c1 ẋ1 + k1 x1 + c2 (ẋ1 − ẋ2 ) + k2 (x1 − x2 ) = F1 m2 ẍ2 + c2 (ẋ2 − ẋ1 ) + k2 (x2 − x1 ) We introduce the augmented state vector: = F2 z1 x1 z2 x2 z= z3 = ẋ1 z4 ẋ2 =⇒ . ẋ1 z3 ẋ2 z4 = =⇒ ż = ẍ1 −(k1 + k2 )z1 /m1 + k2 z2 /m1 − (c1 + c2 )z3 /m1 + c2 z4 /m1 k2 z1 /m2 − k2 z2 /m2 + c2 z3 /m2 − c2 z4 /m2 ẍ2 Institute of Structural Engineering Identification Methods for Structural Systems 2DOF System – State Space representation Then, State eq. 0 0 0 0 1 0 0 1 k2 m2 k2 m1 − mk22 − c1m+c1 2 c2 m2 c2 m1 − mc22 ż = − k1m+k2 1 | }| {z A x1 x2 ẋ1 ẋ2 {z z 0 0 0 0 + 1 m 0 1 1 0 m } | {z 2 B =⇒ ż = Az + Bu Output eq. y= | 1 0 0 {z C 0 } | x1 x2 ẋ1 ẋ2 {z z Institute of Structural Engineering + 0 0 | {z } D F1 = Cz + Du F2 | {z } u } Identification Methods for Structural Systems F1 F2 | {z } u } 2DOF System – State Space representation or, State eq. 0 0 0 0 1 0 0 1 k2 m2 k2 m1 − mk22 − c1m+c1 2 c2 m2 c2 m1 − mc22 ż = − k1m+k2 1 }| {z | A x1 x2 ẋ1 ẋ2 {z z 0 0 0 0 + 1 m 0 1 1 0 m } | {z 2 B =⇒ ż = Az + Bu Output eq. y= | 0 0 0 {z C 1 } | x1 x2 ẋ1 ẋ2 {z z Institute of Structural Engineering + 0 0 | {z } D F1 = Cz + Du F2 | {z } u } Identification Methods for Structural Systems F1 F2 | {z } u } 2DOF System – State Space representation or, State eq. 0 0 0 0 1 0 0 1 k2 m2 k2 m1 − mk22 − c1m+c1 2 c2 m2 c2 m1 − mc22 ż = − k1m+k2 1 | }| {z A x1 x2 ẋ1 ẋ2 {z z 0 0 0 0 + 1 m 0 1 1 0 m } | {z 2 B F1 F2 | {z } u } =⇒ ż = Az + Bu Output eq. y= 0 k2 m2 | 0 − mk22 0 c2 m2 1 − mc22 {z C } | Institute of Structural Engineering x1 x2 ẋ1 ẋ2 {z z + | 0 0 0 1 m2 {z D F1 = Cz + Du F2 | {z } } u } Identification Methods for Structural Systems 2DOF System – Transfer Function representation (Laplace transform) 2DOF system F1 ( t ) k1 k1 x1 c1 c1 x1 c1 x1 ( t ) F2 ( t ) k2 ( x2 − x1 ) k2 ( x2 − x1 ) c2 ( x2 − x1 ) c2 ( x2 − x1 ) m1 m2 m1 F1 ( t ) FBD F2 ( t ) k2 m2 (Lumped Mass System) x2 ( t ) The equations of motion can be written as m1 ẍ1 + c1 ẋ1 + k1 x1 + c2 (ẋ1 − ẋ2 ) + k2 (x1 − x2 ) =F1 m2 ẍ2 + c2 (ẋ2 − ẋ1 ) + k2 (x2 − x1 ) =F2 ) L(·) with zero i.c. =⇒ ) {m1 s 2 + (c1 + c2 )s + (k1 + k2 )}X1 (s) − (c2 s + k2 )X2 (s) =F1 (s) (m2 s 2 + c2 s + k2 )X2 (s) − (c2 s + k2 )X1 (s) =F2 (s) =⇒ {m1 s 2 + (c1 + c2 )s + (k1 + k2 )}X1 (s) − (c2 s + k2 )X2 (s) =F1 (s) =⇒ 1 m2 s 2 + c2 s + k2 · X2 (s) − · F2 (s) =X1 (s) c2 s + k2 c2 s + k2 Institute of Structural Engineering Identification Methods for Structural Systems 2DOF System – Transfer Function representation (Laplace transform) 2s 4 + 0.25s 3 + 500.0075s 2 + 30s + 30000 0.05s + 100 · X2 (s) − 2s 2 + 0.15s + 300 0.05s + 100 s 2 + 0.05s + 100 0.05s + 100 2s 4 + 0.25s 3 + 500.005s 2 + 20s + 20000 0.05s + 100 · X2 (s) − s 2 + 0.05s + 100 0.05s + 100 2s 2 + 0.15s + 300 2s 4 + 0.25s 3 + 500.005s 2 + 20s + 20000 · F2 (s) + 2s 2 + 0.15s + 300 0.05s + 100 · X2 (s) − · F1 (s) + 0.5s 2 + 0.025s + 50 s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 F1 (s) + 0.05s + 100 · X2 (s) − · X2 (s) − 1 0.05s + 100 · F2 (s) =F1 (s) · F2 (s) =X1 (s) =⇒ 1 0.05s + 100 · F1 (s) = X2 (s) · F2 (s) =X1 (s) s 2 + 0.075s + 150 s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 0.025s + 50 s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 Institute of Structural Engineering X2 (s) =F1 (s) · F2 (s) =X1 (s) 2s 4 + 0.25s 3 + 500.005s 2 + 20s + 20000 0.05s + 100 s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 1 0.05s + 100 0.05s + 100 s 2 + 0.05s + 100 0.025s + 50 0.0025s 2 + 10s + 10000 · F2 (s) − =⇒ · F2 (s) = X2 (s) F2 (s) =X1 (s) Identification Methods for Structural Systems =⇒ 2DOF System – Transfer Function representation (Laplace transform) Displacement X1 (s) F1 (s) X2 (s) F1 (s) 0.5s 2 + 0.025s + 50 = s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 0.025s + 50 = s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 X1 (s) , F2 (s) X2 (s) , F2 (s) = = 0.025s + 50 s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 s 2 + 0.075s + 150 s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 Velocity sX1 (s) F1 (s) sX2 (s) F1 (s) = = s(0.5s 2 + 0.025s + 50) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 s(0.025s + 50) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 sX1 (s) , F2 (s) sX2 (s) , F2 (s) = = s(0.025s + 50) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 s(s 2 + 0.075s + 150) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 Acceleration s 2 X1 (s) F1 (s) s 2 X2 (s) F1 (s) = = s 2 (0.5s 2 + 0.025s + 50) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 s 2 (0.025s + 50) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 Institute of Structural Engineering , , s 2 X1 (s) F2 (s) s 2 X2 (s) F2 (s) = = s 2 (0.025s + 50) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 s 2 (s 2 + 0.075s + 150) s 4 + 0.125s 3 + 250.0025s 2 + 10s + 10000 Identification Methods for Structural Systems 2DOF System – Frequency Response Function (Bode diagrams) Driving example: transfer function between the first output (X1 (s)) and the first input (F1 (s)). 0.5s 2 + 0.025s + 50 X1 (s) = 4 F1 (s) s + 0.125s 3 + 250.0025s 2 + 10s + 10000 √ Assume sinusoidal excitation and set s = jω, j = −1, ω frequency of excitation (rad/s). 0.5(jω)2 + 0.025(jω) + 50 X1 (jω) = 4 F1 (jω) (jω) + 0.125(jω)3 + 250.0025(jω)2 + 10(jω) + 10000 Manipulate X1 (jω) (−0.5ω 2 + 50) + (0.025ω)j = 4 F1 (jω) (ω − 250.0025ω 2 + 10000) + (10ω − 0.125ω 3 )j Institute of Structural Engineering Identification Methods for Structural Systems 2DOF System – Frequency Response Function (Bode diagrams) Multiply by the conjugate of the denominator X1 (jω) = F1 (jω) (−0.5ω 6 + 175ω 4 − 17500ω 2 + 500000) + (0.0875ω 5 + 5ω 3 − 250ω)j (ω 4 − 250.0025ω 2 + 10000)2 + (10ω − 0.125ω 3 )2 Define H11 (jω): the steady–state FRF of the first output to the first input, when the latter is sinusoidal. H11 (jω) is a complex number H11 (jω) = −0.5ω 6 + 175ω 4 − 17500ω 2 + 500000 (ω 4 − 250.0025ω 2 + 10000)2 + (10ω − 0.125ω 3 )2 | {z } + 0.0875ω 5 + 5ω 3 − 250ω (ω 4 − 250.0025ω 2 + 10000)2 + (10ω − 0.125ω 3 )2 | {z } real part complex part Representation phase z }| { H11 (jω) = |H(jω)| e φ(jω) | {z } magnitude Bode diagram: plot of the magnitude and the phase of an FRF against frequency. Institute of Structural Engineering Identification Methods for Structural Systems j
© Copyright 2025 Paperzz