Towards understanding information transmission in the auditory periphery – A modeling approach Stefan Stenfelt A hearing impairment is primarily determined and judged by the audiogram. Additional test (discrimination etc) helps with the diagnosis. However, hearing aid fitting is largely based solely on the audiogram. This means that patients with identical auditory thresholds but different origins of the impairment receives the same fitting of the hearing aid, which is most likely suboptimal. Hearing level (dB HL) Background 0 20 40 60 80 125 250 500 1k 2k 4k Frequency (Hz) 8k Linköping University 2008-09-24 The hearing function Sid 2 Linköpings universitet Hearing impairment PERCEPTION / COMPREHENSION Bottom-up processing A hearing impairment affects the bottom-up information transmission. This information degradation can in part be compensated by topdown processes. However, even if compensated by amplification (hearing aid), almost all hearing impairments result in an effective information degradation. Top-down processing To understand how a hearing loss affects the information transmission, we need first to understand the processes involved in normal hearing. SOUND 2008-09-24 Sid 3 2008-09-24 Linköpings universitet The normal peripheral hearing function Sid 4 Linköpings universitet The outer ear GOE(f,R) Sound Neural pulses Sound pressure Outer ear Sid 5 Vibration The subjective specific filtering of the outer ear provides space perception of the auditory scene (individual HRTFs). Signal oriented 2008-09-24 Outer ear scalar scalar Anatomical Linköpings universitet Middle ear Inner ear 2008-09-24 Sid 6 Linköpings universitet 1 array The inner ear GIE(f,A(f),S1) scalar scalar Middle ear Inner ear scalar The middle ear Stapes Basilar membrane GME(f) Vibration Round window Sound pressure/ vibration Fluid at rest The sound transmission through the middle ear can be approximated by a second order filter (band pass) Tectorial membrane Hensen cells C OH C IH Basilar membrane 2008-09-24 Sid 7 2008-09-24 Linköpings universitet Modeling approaches of the inner ear Sid 8 Linköpings universitet Simplified coupled-oscillator model Tectorial membrane Tectorial membrane C IH ¾ Coupled resonator systems Hensen cells Steriocilia C OH ¾ Physical (mechanical) models ¾ Finite Element models Reticular lamina Outer hair cells Dieters’ cells Basilar membrane ¾ Computational models Equation ∑ (G N ¾ Input/output models i j =1 ¾ Non-linear multiple filter models j + miδ ij Basilar membrane 2 ) ddtx i 2 + hi dxi dx ⎞ ⎛ dx dx + U i ( yi ) + si ⎜ 2 i − i −1 − i +1 ⎟ + ki x = −Gi as (t ) dt dt dt ⎠ ⎝ dt ¾ Black-box models 2008-09-24 Sid 9 2008-09-24 Linköpings universitet Finite-element model of organ of Corti Structure motion Sid 10 Linköpings universitet Nonlinear multiple filter model Fluid motion Filter structure nth order BP nth order LP Linear path G Stapes velocity BM velocity nth order BP Nonlinear block nth order BP nth order LP Nonlinear path e.g. Lopez-Poveda, Meddis JASA 2001:110;3107-17 2008-09-24 Sid 11 Linköpings universitet 2008-09-24 Sid 12 Linköpings universitet 2 Black-box (data driven) model Interpretation The general model Sound source Auditory processing Model structure ? -NL ARMA -State-space -etc Input EC sound pressure Stapes velocity Auditory signal processing, coding and decoding Output Sound pressure information Neural spike pattern BM velocity Perception Neural information High-order control 2008-09-24 Sid 13 2008-09-24 Linköpings universitet Auditory signal processing, coding and decoding Auditory processing model - a physical based approach Sid 14 Linköpings universitet Parts of the inner ear: the basilar membrane – a spectrum analyzer GOE(f,R) Inner ear GME(f) Brainstem GIE(f,A(f),S1) array Middle ear array Outer ear Basilar membrane Non-linear Non-linear scalar Linear scalar scalar Stapes Linear Round window Fluid at rest GBS(I(n),S2) Level Sound pressure Simplifications: 2008-09-24 Sid 15 Auditory filter Sound pressure/ vibration Vibration Neural impulses Neural impulses Passive basilar membrane Traveling wave filter No binaural interaction No auditory reflex No general efferent control Frequency 2008-09-24 Linköpings universitet BM displacement Parts of the inner ear: the outer hair cells – an active non-linear amplifier Gain function Compression Linear Linköpings universitet Parts of the inner ear: the inner hair cells – a rectifier Synapse output (spikes/sec) 60 dB Linear Sid 16 Stimulus Compression 0 dB Sound pressure level Sound pressure level IHC IHC filter BM vibration IHC rectifier OHC Modeled by a positive feedback loop BM vibration Feedback filter OHC nonlinearity 2008-09-24 Sid 17 Linköpings universitet 2008-09-24 Sid 18 Linköpings universitet 3 Inner ear Different impairments array scalar Conceptual model of the inner ear ¾ Conductive (transmission to the cochlea) GIE(f,A(f),S1) ¾ Sensorineural (within the cochlea) Passive basilar membrane IHC IHC filter Traveling wave filter ¾ Outer hair cell problem IHC rectifier ¾ Inner hair cell problem BM vibration ¾ Endocochlear potentials ¾ Retrocochlear (auditory nerve & brainstem) Cascade of sequentially tuned LP filters ¾ Central (brain) Feedback filter OHC nonlinearity OHC 2008-09-24 Sid 19 2008-09-24 Linköpings universitet Cochlear pathology according to Schuknecht and Gacek (presbycusis) Sid 20 Linköpings universitet Stria vascularis – the battery of the inner ear Schuknecht and Gacek devided inner ear hearing losses as belonging to one of the four following based on examination of temporal bones. ¾ Sensory (hair cells) ¾ Neural (neurons attaching to the hair cells) ¾ Strial (pathological stria vascularis) ¾ Cochlear conductive (change of mechanical parameters of basilar membrane?) Ann Otol Rhinol Laryngol 1993:102(1pt2);1-16 2008-09-24 Sid 21 2008-09-24 Linköpings universitet Linköpings universitet The modeling approach array scalar The model incorporating endocochlear Inner ear potentials Sid 22 Segments of the BM/organ of Corti GIE(f,A(f),S1) Passive basilar membrane IHC IHC filter Traveling wave filter IHC rectifier BM vibration Cascade of sequentially tuned LP filters Endocochlear Potential Feedback filter OHC nonlinearity Auditory nerve pattern OHC 2008-09-24 Sid 23 Linköpings universitet 2008-09-24 Sid 24 Linköpings universitet 4 What happens with the different types of lesions in terms of signal transmission Inner hair cells No output signal – Dead regions? ¾ IHC ¾ OHC Tectorial membrane ¾ Endocochlear potentials Hensen cells C OH C IH Basilar membrane 2008-09-24 Sid 25 2008-09-24 Linköpings universitet Inner hair cell lesion Sid 26 Linköpings universitet Outer hair cells No feedback – no gain control Tectorial membrane Hensen cells C OH C IH Basilar membrane 2008-09-24 Sid 27 2008-09-24 Linköpings universitet Outer hair cell lesion Sid 28 Linköpings universitet Endocochlear potentials - IHC Lower potentials result in worse transduction (gating) and worse sensitivity for neural activation (less dynamic range) Frequency specificity Stria vascularis Amplitude dynamics Gating - 60 mV 2008-09-24 Sid 29 Linköpings universitet 2008-09-24 Sid 30 Linköpings universitet 5 Endocochlear potentials - OHC How can the different cochlear lesions be estimated within the patient? Output Sound pressure Neural activity The output depends of the driving voltage (endocochlear potential) Input 2008-09-24 Sid 31 2008-09-24 Linköpings universitet Electrophysiological measurements Sid 32 Linköpings universitet Distortion-product oto-acoustic emissions Cochlear microphonic Compound action potential Primarily generated by IHC Primarily generated by OHC From Neely et al JASA 2003, 114:1499 2008-09-24 Sid 33 2008-09-24 Linköpings universitet Estimation of endocochlear potentials Sid 34 Linköpings universitet DPOAE-ABR thresholds From Mills, E&H 2006 Cohlear microphonics measurement Saturation lin Pre c DPOAE threshold Acoustic/OHC Strial/EP Normal Neural/IHC Slope ABR threshold Low-frequency stimulation (200-300 Hz) 2008-09-24 Sid 35 Linköpings universitet 2008-09-24 Sid 36 Linköpings universitet 6
© Copyright 2026 Paperzz