Spin and charge oscillation properties of semiconductor quantum dots from real time simulations Llorenç Serra Departament de Física, Universitat de les Illes Balears, IMEDEA (CSIC-UIB) Outline: * Model of 2d quantum dot * Theoretical framework * Some results * Spin-orbit coupling effects on spin precession Collaborators: A. Puente (Mallorca) M. Valín-Rodríguez (Mallorca) E. Lipparini (Trento) V. Gudmundsson (Reykjavik) 1 Semiconductor quantum dots Vertical quantum dots z L 10-100 nm AlxAsGa1-x 1 nm GaAs * System of confined electrons in 2D * Possibilities: Control of Geometry (circular, elliptic, rectang..) Size Number of electrons ARTIFICIAL ATOMS 2 A SIMPLE MODEL: N electrons in 2D confined by Vext(r) conduction electrons in GaAs effective mass m = 0.067 me dielectric constant k = 12.4 interaction e2/kr confinement potential: jellium disk square well harmonic potential 1 Vext (r ) V0 m* 02 r 2 2 V0 2 N p rs 02 1 N p rs3 H* m*e 4 / 2 (4 0k ) 2 12 meV effective atomic units a0* o (4 0k ) / m e 98 A * 2 H * * 2 55 fs 3 Mean field Ground State Set of orbitals and single-particle energies i (r ) , i i 1,...,N; , * Kohn-Sham version of density-functional-theory: exchange-correlation in LSDA (or CDFT) h[ (r), (r)] i (r ) i i (r ) Spin densities: m *Hartree-Fock theory: exact exchange but no correlation h ' s i (r ) i i (r ) Numerical methods: Discretization of the xy plane in a grid Iterative solution 4 Time evolution td-LSDA i i (r ; t ) h , i (r ; t ) t td-HF i (r ; t ) h ' s i (r ; t ) t i After an initial perturbation on the GS keep track of observables in ‘real’ time Fourier analysis O( ) i (r;0) P i (r) O (t ) oscillation frequencies eigenmodes: FIR (charge dipole) spin modes Alternative to perturbation theory not restricted to small amplitudes or by symmetry 5 Example: Spin-density oscillation 6 Dipole Excitation L i b r e X Y S Free Collective excitations in deformed systems N=20 electrons in a deformed parabola y= 0.75 x = 0.218 H* 1 V (r ) m * 2x x 2 2y y 2 2 E s p н n p-h transitions Spin S X Y 0 . 0 0 . 1 X Y . 2 0 D e n s i d a d S Density Landau damping atract. residual interaction Generalized Kohn theorem x,y x 0.291H* y 0.218 H* 0 . 0 0 . 2 0 . 4 7 * td-(mean field) includes correlation effects * Defines a new correlated ground state (RPA) Applications: * Orbital modes (Lz) * Quadrupole modes (xy) * Absorption patterns in triangular (square) dots * Large amplitude motions * ... 8 FIR Absorption in polygonal dots 9 Local absorption patterns: * amplitude of oscillating density B=1T * corner and side modes 10 Large amplitude motion in tdHF: * non parabolic confinement * CM trajectory * initial rigid displacement * 3 intervals of 9000 steps (12 ps each) * Amplitude shrinks 11 Energy goes to internal modes 12 Spin-orbit coupling and spin precession in quantum dots Two sources : *Dresselhaus (bulk asymmetry) hR *Rashba (nanostructure asymmetry) hD R D ( P y x Px y ) ( P x x Py y ) Coupling constants for 2D bulk: R 0 e Ε D k z 2 ( E vertical electric field ) z0 2 ( z0 vertical width ) * and 0 known from calculations for the bulk (k.p, tight binding) * R and D uncertain in nanostructures (sample dependent) in GaAs 2DEG’s: 5 meVA - 50meVA * Tunability of the Rashba strength 13 *assume given ’s 2 e H h(i ) i i j rij h h0 hZ hR hD *sp hamiltonians 2 P h0 Vext ( x, y ) 2m * 1 hZ g * B ( Bx x B y x Bz x ) 2 14 i (r, ) i (r, ) i (r, ) * spinorial orbitals: * noncollinear SDFT: E[ (r ), m(r )] (r ) i (r, ) 2 i m(r ) i *(r, ) ( , ' ) i (r, ' ) i ' * spin textures on the ground state * time evolution h(r; ' ) i (r; ' ) i i (r, ) ' i i (r, ) h(r; ' ) i (r, ' ) t ' 15 *Analytical solution: neglect interactions vertical magnetic field (Bz) Aleiner-Falk’o transformation U exp i R ( y x x y ) D ( x x y y ) ~ 3 h U h U is diagonal to O( ) * Spin precession: dl = 0 quasi spin-flip P L 2 D 2 (2n 1) D 2 c 02 c 2 / 4 * Larmor precession: L g * B B 16 1 5 0 N = 7 = 1 0 0 P / 2 (GHz) * Dreselhaus SO * strong (z0=50A, blue symbols) weak (z0 =85A, green symbols) = 5 0 L 0 N = 9 P / 2 (GHz) 1 0 0 5 0 = 0 0 = 3 N = 1 1 1 0 0 P / 2 (GHz) * zero field offset * rearrangements jumps * results within LSDA 0 5 0 0 0 1 2 B (T ) 3 17 time simulation of spin precession in LSDA: 18 In a horizontal B: *numerical calculation *first and second levels *circular parabolic confinement 19 1 2 2 Vext ( x, y ) x 2 x y 2 y 2 y transition between Kramers conjugates x Elliptical dots: 20 21
© Copyright 2026 Paperzz