Robustness of the EWMA control chart to non

Robustness of the EWMA
control chart to non-normality
Connie M Borror; Douglas C Montgomery; George C Runger
Journal of Quality Technology; Jul 1999; 31, 3
Introduction
• Individual measurements occur frequently in the
chemical and process industries.
• The traditional method of dealing with the case of n=1
is to use the Shewhart individuals control chart to
monitor the process mean.
• The individuals control chart has two widely-cited
disadvantages:
• (1) the chart is not very sensitive to small shifts in the
process mean.
• (2) the performance of the chart can be adversely
affected if the observations are not normally
distribution.
• It is certainly true that non-normality of the process
data is often not a significant concern if the X-bar
control chart is used to monitor the mean.
國立雲林科技大學 工業工程與管理所
Introduction
• In this paper, we show that the ARL performance of
the Shewhart individuals control chart when the
process is in control is very sensitive to the
assumption of normality.
• We suggest the EWMA control chart as an alternative
to the individuals chart for non-normal data.
• We show that, in the non-normal case, a properly
designed EWMA control chart will have an in-control
ARL that is reasonably close to the value of 370.4 for
the individuals chart for normally distributed date.
• For all cases, the ARL’s were computed using the
Markov chain method.
國立雲林科技大學 工業工程與管理所
Background Information-EWMA
•The EWMA is defined as
zi  xi  1   zi 1
•Where xi is the current observation and λ, smoothing
parameter, is a constant for 0≦λ≦1
•The control limits for the EWMA control chart are




  
2i
UCL   0  L 
 1  1   
2 
  
2i
LCL   0  L 
 1  1   
 2 
• Where L determines the width of the control limits
國立雲林科技大學 工業工程與管理所
Background Information-EWMA
•For large values of i , the steady-state EWMA control
limits are
  
UCL   0  L 

 2 
  
LCL   0  L 

2 
•If any point exceeds the control limits, the process is
assumed to be out of control.
國立雲林科技大學 工業工程與管理所
Background Information-Skewed
and symmetric distribution
• To study the robustness of the EWMA control chart
and the individuals control chart to normality
assumption, both skewed and symmetric distribution
were examined.
• Symmetric distribution:t distribution
• Let k is degree of freedom
• The Mean is 0
• The Variance is k/(k-2)
國立雲林科技大學 工業工程與管理所
Various t distribution and normal distribution
with the same mean and variance
國立雲林科技大學 工業工程與管理所
Background Information-Skewed and
symmetric distribution
•Skewed distribution:Gamma distribution
1
 x
 1
f x   
x exp   
  
 




  2

2
•Let α=0.5, 1, 2, 3, and 4,
while holding β=1
國立雲林科技大學 工業工程與管理所
Various Gamma distribution and normal
distribution with the same mean and variance
國立雲林科技大學 工業工程與管理所
Results
• The normal-theory ARL for individuals control chart
with 3σ is known to be 370.4.
• For the EWMA, we can determine the values of λ
and L to obtain approximately the same ARL of
370.4.
• Value of 0.05, 0.1, and 0.2 were chosen for λ, with
the corresponding value of 2.492, 2.703, and 2.86,
respectively, chosen for L.
國立雲林科技大學 工業工程與管理所
In-Control ARL’s for EWMA-Gamma
EWMA
Shewhart
λ
0.05
0.1
0.2
1
L
2.492
2.703
2.86
3
Normal
370.4
370.8
370.5
370.4
Gam(4,1)
372
341
259
97
Gam(3,1)
372
332
238
58
Gam(2,1)
372
315
208
71
Gam(1,1)
369
274
163
55
Gam(0.5,1)
357
229
131
45
The Best Case
國立雲林科技大學 工業工程與管理所
Out-of-control ARL’s for the EWMA-Gamma
Shift (Number of Standard Deviations)
EWMA
λ=0.05
L=2.492
EWMA
λ=0.1
L=2.703
0.5
1
1.5
2
2.5
3
Normal
26.5
10.8
6.8
5
4
3.4
Gam(4,1)
26.4
11
6.9
5.1
4.1
3.4
Gam(3,1)
26.4
11
7
5.1
4.1
3.5
Gam(2,1)
26.4
11.1
7
5.2
4.1
3.5
Gam(1,1)
26.4
11.2
7.1
5.3
4.2
3.5
Gam(0.5,1)
26.6
11.4
7.3
5.4
4.3
3.6
Normal
28.3
9.8
5.8
4.2
3.3
2.8
Gam(4,1)
26.5
9.9
6
4.3
3.4
2.9
Gam(3,1)
26.3
9.9
6
4.4
3.5
2.9
Gam(2,1)
26
10
6.1
4.4
3.5
2.9
Gam(1,1)
25.5
10.1
6.2
4.5
3.6
3
Gam(0.5,1)
25.1
10.2
6.3
4.6國立雲林科技大學
3.7 工業工程與管理所
3.1
Out-of-control ARL’s for the EWMA-Gamma
Shift (Number of Standard Deviations)
EWMA
λ=0.2
L=2.86
Shewhart
0.5
1
1.5
2
2.5
3
Normal
36.2
9.8
5.2
3.6
2.8
2.3
Gam(4,1)
28
9.6
5.4
3.8
2.9
2.4
Gam(3,1)
27.3
9.5
5.4
3.8
2.9
2.4
Gam(2,1)
26.3
9.5
5.4
3.8
3
2.5
Gam(1,1)
24.7
9.5
5.5
3.9
3
2.5
Gam(0.5,1)
23.3
9.5
5.7
4
3.2
2.6
Normal
155.2
44
15
6.3
3
2
Gam(4,1)
34.2
15
7.7
4.5
3
2.2
Gam(3,1)
31
14
7.4
4.5
3
2.2
Gam(2,1)
27
12.6
7
4.4
3
2.2
Gam(1,1)
21.7
11
6.4
4.2
3
2.3
Gam(0.5,1)
18.3
9.7
6
4.1
3
2.4
國立雲林科技大學 工業工程與管理所
In-Control ARL’s for EWMA-t
EWMA
λ
0.05
L
2.492 2.703
0.1
Shewhart
0.2
1
2.86
3
Normal 370.4 370.8 370.5
370.4
t50
369
365
353
283
t40
369
363
348
266
t30
368
361
341
242
t20
367
355
325
204
t15
365
349
310
176
t10
361
335
280
137
t8
358
324
259
117
t6
351
305
229
96
t4
343
274
188
76
國立雲林科技大學 工業工程與管理所
Out-of-control ARL’s for the EWMA-t
Shift
0.5
EWMA
λ=0.05
L=2.492
EWMA
λ=0.1
L=2.703
EWMA
λ=0.2
L=2.86
t50~10(26) N、t50~40(28.3) N(36.2)
N(26.5)
t30~4(28.4~30 ) t(36~41 )
t8~4(27)
Shewhart
N(155.2)
t50~6(137~73 )
t4(63)
1
N(10.8)
t(11)
N、t(9.8)
N、t50~20(9.8) N(44)
t15~4(9.9~10.3) t50~8(43~39 )
t6~4(38)
1.5
N(6.8)
t(6.7)
N、t(5.8)
N、t(5.2)
N、t50~20(15)
t15~4(16~19 )
2
N、t(5)
N、t(4.2)
N、t(3.6)
N(6.3)
t50~4(6.4~9 )
2.5
N、t(4)
N、t(3.3)
N、t(2.6)
N(3)
t50~4(3.3~4 )
3
N(3.4)
t(3.3)
N、t(2.8)
N、t(2.3)
N、t(2)
EWMA is better than Shewhart
國立雲林科技大學 工業工程與管理所
Comparing three EWMA control chart designs
• There have been many suggestion in the literature
for designing an EWMA control chart.
• The table compares three EWMA control chart
designs.
• 1st column: λ=0.1 and L=2.7 (Montgomery, 1996)
• 2rd column : λ=0.1 and L=3 (computer packages)
• 3th column : λ=0.4 and L=3 (Hunter, 1989)
國立雲林科技大學 工業工程與管理所
Comparing three EWMA control chart designs
λ=0.1
λ=0.1
λ=0.4
L=2.7
L=3
L=3
Normal
368
838
421
t50
362
815
368
t40
361
808
355
t30
358
798
336
t20
346
775
301
t15
346
751
271
t10
333
698
223
t8
321
655
195
t6
303
582
161
t4
272
461
124
In-Control
λ=0.1
λ=0.1
λ=0.4
L=2.7
L=3
L=3
Normal
368
838
421
Gam(4,1)
339
648
173
Gam(3,1)
329
605
153
Gam(2,1)
313
538
128
Gam(1,1)
272
422
96
Gam(0.5,1)
228
328
76
For λ=0.1 and L=3, the ARL’s are too large.
For λ=0.4 and L=3, the ARL’s are smaller than the normal國立雲林科技大學 工業工程與管理所
theory value.
Conclusions
• 在In control的情況下,λ=0.05 and L=2.492 EWMA 管
制圖在非常態ARL值接近常態假設的ARL值。不會超出
8%的差距(沒有低於340.76)。
• 在In control的情況下,除了極端非常態的分配參數值
(t6、t4、Gam1,1、Gam0.5,1),λ=0.1 and L=2.703
EWMA 管制圖在非常態的ARL與常態的ARL不會超出
15%的差距(很少低於315)。
• 在不同的分配參數的情況下,EWMA偵測製程偏移的能
力並沒有太大的差別。
國立雲林科技大學 工業工程與管理所