Robustness of the EWMA control chart to non-normality Connie M Borror; Douglas C Montgomery; George C Runger Journal of Quality Technology; Jul 1999; 31, 3 Introduction • Individual measurements occur frequently in the chemical and process industries. • The traditional method of dealing with the case of n=1 is to use the Shewhart individuals control chart to monitor the process mean. • The individuals control chart has two widely-cited disadvantages: • (1) the chart is not very sensitive to small shifts in the process mean. • (2) the performance of the chart can be adversely affected if the observations are not normally distribution. • It is certainly true that non-normality of the process data is often not a significant concern if the X-bar control chart is used to monitor the mean. 國立雲林科技大學 工業工程與管理所 Introduction • In this paper, we show that the ARL performance of the Shewhart individuals control chart when the process is in control is very sensitive to the assumption of normality. • We suggest the EWMA control chart as an alternative to the individuals chart for non-normal data. • We show that, in the non-normal case, a properly designed EWMA control chart will have an in-control ARL that is reasonably close to the value of 370.4 for the individuals chart for normally distributed date. • For all cases, the ARL’s were computed using the Markov chain method. 國立雲林科技大學 工業工程與管理所 Background Information-EWMA •The EWMA is defined as zi xi 1 zi 1 •Where xi is the current observation and λ, smoothing parameter, is a constant for 0≦λ≦1 •The control limits for the EWMA control chart are 2i UCL 0 L 1 1 2 2i LCL 0 L 1 1 2 • Where L determines the width of the control limits 國立雲林科技大學 工業工程與管理所 Background Information-EWMA •For large values of i , the steady-state EWMA control limits are UCL 0 L 2 LCL 0 L 2 •If any point exceeds the control limits, the process is assumed to be out of control. 國立雲林科技大學 工業工程與管理所 Background Information-Skewed and symmetric distribution • To study the robustness of the EWMA control chart and the individuals control chart to normality assumption, both skewed and symmetric distribution were examined. • Symmetric distribution:t distribution • Let k is degree of freedom • The Mean is 0 • The Variance is k/(k-2) 國立雲林科技大學 工業工程與管理所 Various t distribution and normal distribution with the same mean and variance 國立雲林科技大學 工業工程與管理所 Background Information-Skewed and symmetric distribution •Skewed distribution:Gamma distribution 1 x 1 f x x exp 2 2 •Let α=0.5, 1, 2, 3, and 4, while holding β=1 國立雲林科技大學 工業工程與管理所 Various Gamma distribution and normal distribution with the same mean and variance 國立雲林科技大學 工業工程與管理所 Results • The normal-theory ARL for individuals control chart with 3σ is known to be 370.4. • For the EWMA, we can determine the values of λ and L to obtain approximately the same ARL of 370.4. • Value of 0.05, 0.1, and 0.2 were chosen for λ, with the corresponding value of 2.492, 2.703, and 2.86, respectively, chosen for L. 國立雲林科技大學 工業工程與管理所 In-Control ARL’s for EWMA-Gamma EWMA Shewhart λ 0.05 0.1 0.2 1 L 2.492 2.703 2.86 3 Normal 370.4 370.8 370.5 370.4 Gam(4,1) 372 341 259 97 Gam(3,1) 372 332 238 58 Gam(2,1) 372 315 208 71 Gam(1,1) 369 274 163 55 Gam(0.5,1) 357 229 131 45 The Best Case 國立雲林科技大學 工業工程與管理所 Out-of-control ARL’s for the EWMA-Gamma Shift (Number of Standard Deviations) EWMA λ=0.05 L=2.492 EWMA λ=0.1 L=2.703 0.5 1 1.5 2 2.5 3 Normal 26.5 10.8 6.8 5 4 3.4 Gam(4,1) 26.4 11 6.9 5.1 4.1 3.4 Gam(3,1) 26.4 11 7 5.1 4.1 3.5 Gam(2,1) 26.4 11.1 7 5.2 4.1 3.5 Gam(1,1) 26.4 11.2 7.1 5.3 4.2 3.5 Gam(0.5,1) 26.6 11.4 7.3 5.4 4.3 3.6 Normal 28.3 9.8 5.8 4.2 3.3 2.8 Gam(4,1) 26.5 9.9 6 4.3 3.4 2.9 Gam(3,1) 26.3 9.9 6 4.4 3.5 2.9 Gam(2,1) 26 10 6.1 4.4 3.5 2.9 Gam(1,1) 25.5 10.1 6.2 4.5 3.6 3 Gam(0.5,1) 25.1 10.2 6.3 4.6國立雲林科技大學 3.7 工業工程與管理所 3.1 Out-of-control ARL’s for the EWMA-Gamma Shift (Number of Standard Deviations) EWMA λ=0.2 L=2.86 Shewhart 0.5 1 1.5 2 2.5 3 Normal 36.2 9.8 5.2 3.6 2.8 2.3 Gam(4,1) 28 9.6 5.4 3.8 2.9 2.4 Gam(3,1) 27.3 9.5 5.4 3.8 2.9 2.4 Gam(2,1) 26.3 9.5 5.4 3.8 3 2.5 Gam(1,1) 24.7 9.5 5.5 3.9 3 2.5 Gam(0.5,1) 23.3 9.5 5.7 4 3.2 2.6 Normal 155.2 44 15 6.3 3 2 Gam(4,1) 34.2 15 7.7 4.5 3 2.2 Gam(3,1) 31 14 7.4 4.5 3 2.2 Gam(2,1) 27 12.6 7 4.4 3 2.2 Gam(1,1) 21.7 11 6.4 4.2 3 2.3 Gam(0.5,1) 18.3 9.7 6 4.1 3 2.4 國立雲林科技大學 工業工程與管理所 In-Control ARL’s for EWMA-t EWMA λ 0.05 L 2.492 2.703 0.1 Shewhart 0.2 1 2.86 3 Normal 370.4 370.8 370.5 370.4 t50 369 365 353 283 t40 369 363 348 266 t30 368 361 341 242 t20 367 355 325 204 t15 365 349 310 176 t10 361 335 280 137 t8 358 324 259 117 t6 351 305 229 96 t4 343 274 188 76 國立雲林科技大學 工業工程與管理所 Out-of-control ARL’s for the EWMA-t Shift 0.5 EWMA λ=0.05 L=2.492 EWMA λ=0.1 L=2.703 EWMA λ=0.2 L=2.86 t50~10(26) N、t50~40(28.3) N(36.2) N(26.5) t30~4(28.4~30 ) t(36~41 ) t8~4(27) Shewhart N(155.2) t50~6(137~73 ) t4(63) 1 N(10.8) t(11) N、t(9.8) N、t50~20(9.8) N(44) t15~4(9.9~10.3) t50~8(43~39 ) t6~4(38) 1.5 N(6.8) t(6.7) N、t(5.8) N、t(5.2) N、t50~20(15) t15~4(16~19 ) 2 N、t(5) N、t(4.2) N、t(3.6) N(6.3) t50~4(6.4~9 ) 2.5 N、t(4) N、t(3.3) N、t(2.6) N(3) t50~4(3.3~4 ) 3 N(3.4) t(3.3) N、t(2.8) N、t(2.3) N、t(2) EWMA is better than Shewhart 國立雲林科技大學 工業工程與管理所 Comparing three EWMA control chart designs • There have been many suggestion in the literature for designing an EWMA control chart. • The table compares three EWMA control chart designs. • 1st column: λ=0.1 and L=2.7 (Montgomery, 1996) • 2rd column : λ=0.1 and L=3 (computer packages) • 3th column : λ=0.4 and L=3 (Hunter, 1989) 國立雲林科技大學 工業工程與管理所 Comparing three EWMA control chart designs λ=0.1 λ=0.1 λ=0.4 L=2.7 L=3 L=3 Normal 368 838 421 t50 362 815 368 t40 361 808 355 t30 358 798 336 t20 346 775 301 t15 346 751 271 t10 333 698 223 t8 321 655 195 t6 303 582 161 t4 272 461 124 In-Control λ=0.1 λ=0.1 λ=0.4 L=2.7 L=3 L=3 Normal 368 838 421 Gam(4,1) 339 648 173 Gam(3,1) 329 605 153 Gam(2,1) 313 538 128 Gam(1,1) 272 422 96 Gam(0.5,1) 228 328 76 For λ=0.1 and L=3, the ARL’s are too large. For λ=0.4 and L=3, the ARL’s are smaller than the normal國立雲林科技大學 工業工程與管理所 theory value. Conclusions • 在In control的情況下,λ=0.05 and L=2.492 EWMA 管 制圖在非常態ARL值接近常態假設的ARL值。不會超出 8%的差距(沒有低於340.76)。 • 在In control的情況下,除了極端非常態的分配參數值 (t6、t4、Gam1,1、Gam0.5,1),λ=0.1 and L=2.703 EWMA 管制圖在非常態的ARL與常態的ARL不會超出 15%的差距(很少低於315)。 • 在不同的分配參數的情況下,EWMA偵測製程偏移的能 力並沒有太大的差別。 國立雲林科技大學 工業工程與管理所
© Copyright 2026 Paperzz