LINEAR CONTROL SYSTEMS Ali Karimpour Associate Professor Ferdowsi University of Mashhad lecture6 Lecture 6 Topics to be covered include: State space representation. State transition matrix. Calculation of state transition matrix for time varying system. Significance of state transition matrix and its property. State transition equation. State transition equation determined by state diagram. Eigenvalues of the matrix A in state space form and poles of transfer function Similarity transformation. 2 Dr. Ali Karimpour Feb 2013 lecture6 State Space Models مدل فضای حالت General form of state space model LTI systems If initial condition and input are defined, then x(t), y(t) ? چند است؟x(t) وy(t) اگر شرائط اولیه و ورودی مشخص باشد مقدار Start with homogeneous equation x Ax .با معادله همگن شروع کنید x(t0 ) x0 3 Dr. Ali Karimpour Feb 2013 lecture6 State transition matrix ماتریس انتقال حالت x Ax x(t0 0) x(0) x(t ) (t ) x(0) (t ) : is state transition matrix ماتریس انتقال حالت If t0 is not zero x(t ) (t t0 ) x(t0 ) 4 Dr. Ali Karimpour Feb 2013 lecture6 Determination of state transition matrix تعیین ماتریس انتقال حالت Method I x Ax x(t0 ) x0 sx( s) x0 Ax( s) 1 روش اول 1 x( s) ( sI A) x0 x(t ) L ( sI A) 1 x (t ) L (sI A) 1 x(t ) (t ) x0 0 1 5 Dr. Ali Karimpour Feb 2013 lecture6 Determination of state transition matrix تعیین ماتریس انتقال حالت Method II x Ax x(t ) e x0 At (t ) e x(t0 ) x0 روش دوم x(t ) (t ) x0 At 1 2 2 1 3 3 e I At At A t ... 1.2 1.2.3 At 6 Dr. Ali Karimpour Feb 2013 lecture6 Determination of state transition matrix تعیین ماتریس انتقال حالت x1 (t ) 11 (t ) x (t ) (t ) 2 21 12 (t ) x1 (0) 22 (t ) x2 (0) x1 (t ) 11 (t ) x (t ) (t ) 2 21 12 (t ) 1 11 (t ) 22 (t ) 0 21 (t ) x1 (t ) 11 (t ) x (t ) (t ) 2 21 12 (t ) 0 12 (t ) 22 (t ) 1 22 (t ) Method III روش سوم So ith column of Φ is the response of system to 0 0 . . 1 . . 0 ith position 7 Dr. Ali Karimpour Feb 2013 lecture6 Example 1 State transition matrix and x(t) . را بیابیدx(t) ماتریس انتقال حالت و:1 مثال 2 1 x x 0 3 2 x(0) 1 x(t ) L1 ( sI A) 1 x0 (t ) L1 ( sI A) 1 e 2t (t ) 0 e 2 t 1 s 2 L 0 e e 3t 3t 1 s 3 2 t x1 (t ) e x (t ) 2 0 1 1 1 s 2 L 0 1 ( s 2)( s 3) 1 s 3 e 2t e 3t 2 3e 2t e 3t 3t 3t 1 e e 8 Dr. Ali Karimpour Feb 2013 lecture6 Property of state transition matrix for LTI systems LTI خواص ماتریس انتقال حالت در سیستمهای 1- Φ(0) = I 2- Φ-1(t)= Φ(-t) 3- Φ(t2-t1)Φ(t1-t0) = Φ(t2-t0) 4- Φk(t) = Φ(kt) 9 Dr. Ali Karimpour Feb 2013 lecture6 State transition matrix for time varying systems ماتریس انتقال حالت برای سیستمهای متغیر با زمان 0 0 x x t 0 x1 (t ) 0 x2 (t ) tx1 (t ) x1 (0) 1 x(0) x2 (0) 0 1 x(t ) 2 0.5t x1 (0) 0 x(0) x2 (0) 1 0 x(t ) 1 1 (t ) 2 0 . 5 t 0 1 10 Dr. Ali Karimpour Feb 2013 lecture6 State transition equation x Ax Bu معادله انتقال حالت x(t0 ) x0 sx(s) x0 Ax(s) Bu (s) 1 1 x( s) ( sI A) x0 ( sI A) Bu ( s) t x(t ) (t ) x0 (t )Bu ( )d 0 State transition equation Convolution integral 11 Dr. Ali Karimpour Feb 2013 lecture6 Example 2 Find state transition equation for unit step . معادله انتقال حالت را با فرض اعمال پله واحد بیابید:2 مثال 2 1 0 x1 (0) x x u x(0) x2 (0) 0 3 1 x(t ) L1 ( sI A) 1 x0 (t ) L1 ( sI A) 1 1 s 2 L 0 e 2t (t ) 0 1 s 3 1 1 1 s 2 L 0 e 2t e 3t 3t e 1 ( s 2)( s 3) 1 s 3 12 Dr. Ali Karimpour Feb 2013 lecture6 Example 2 Find state transition equation for unit step . معادله انتقال حالت را با فرض اعمال پله واحد بیابید:2 مثال 2 1 0 x x u 0 3 1 x1 (0) x(0) x ( 0 ) 2 e 2t (t ) 0 e 2t e 3t 3t e t x(t ) (t ) x0 (t )bu( )d 0 2 ( t ) t e e 2t e 2t e 3t x1 (0) e 2(t ) e 3(t ) 0 x(t ) u ( )d 3( t ) 3t 0 e e 0 1 0 x2 (0) 2 ( t ) e 2t e 2t e 3t x1 (0) t e e 3( t ) x(t ) d 3( t ) 3t 0 e e 0 x2 (0) ..... ..... 13 Dr. Ali Karimpour Feb 2013 lecture6 Example 3 Find x1(s) and x2(s) .را بیابید x2(s) و x1(s) معادله:3 مثال 2 1 0 x1 (0) x x u x(0) x2 (0) 0 3 1 x(s) (sI A) 1 x(0) (sI A) 1 Bu (s) s 2 x( s ) 0 1 x1 ( s ) s 2 x ( s) 2 0 1 1 s 2 x(0) s3 0 1 1 0 u ( s) s 3 1 1 1 1 1 1 x1 (0) x 2 ( 0) u ( s) ( s 2)( s 3) x1 (0) ( s 2)( s 3) s2 ( s 2)( s 3) ( s 2)( s 3) u ( s ) 1 x 2 ( 0) 1 1 1 x 2 ( 0) u (s) s3 s3 s3 s3 14 Dr. Ali Karimpour Feb 2013 lecture6 ِExample 4: Derive x1(s) by using state diagram. 2 1 0 x x u 0 3 1 x2 (0) u(s) 1 x2 s -1 -3 x2 x1 (0) s -1 1 x1 s -1 x1 x2 -2 s -1 x1 1 1 1 x1 ( s) x1 (0) x2 (0) u ( s) s2 ( s 2)( s 3) ( s 2)( s 3) 15 Dr. Ali Karimpour Feb 2013 lecture6 Relation between SS model and TF model. ارتباط بین معادالت فضای حالت و تابع انتقال adj ( sI A) G( s) C BD sI A Poles of G(s) ? Eigenvalues of A (modes) ? ؟A ارتباط بین قطبهای تابع انتقال و مقادیر ویژه Poles of G(s) Eigenvalues of A 16 Dr. Ali Karimpour Feb 2013 lecture6 Example 5: Find the poles of transfer function and the eigenvalues of A 1 0 0 0 x 0 0 1 x 0u 6 11 6 1 y [1 1 0] x s 1 SI A 0 s مطلوبست قطبهای:5مثال A تابع انتقال و مقادیر ویژه 0 1 s 3 6s 2 11s 6 ( s 1)( s 2)( s 3) 6 11 s 6 eig(A) s 1 1 s 1 g ( s ) d c( sI A) b 3 2 ( s 1)( s 2)( s 3) ( s 2)( s 3) s 6s 11s 6 1 [num,den]=ss2tf(A,b,c,0), g=tf(num,den) , g=minreal(g) 17 Dr. Ali Karimpour Feb 2013 lecture6 Example5: Continue 1 0 0 0 x 0 0 1 x 0u 6 11 6 1 y [1 1 0] x 1 3 2 2 3 1 Eigenvalues of A A مقادیر ویژه ادامه:5مثال G( s) 1 ( s 2)( s 3) p1 3 p2 2 Poles of system قطبهای سیستم What happened to -1 ??!!?? 18 Dr. Ali Karimpour Feb 2013 lecture6 Change of variables (Similarity transformation) )تغییر متغیرها ( تبدیالت همانندی x Ax bu y cx du w1 x1 x3 w2 x1 2 x2 w3 x2 x3 x Ax bu y cx du Let A is 3 3 b is 3 1 c is 1 3 d is 11 1 0 1 w 1 2 0 x Px 0 1 1 1 P 1w AP w bu y cP 1w du w Aˆ w bˆu y cˆw dˆu 1 1 0 1 x P 1w 1 2 0 w 0 1 1  w P A P 1w Pbu y cP 1w du b̂ ĉ d̂ 19 Dr. Ali Karimpour Feb 2013 lecture6 Example 6: A similarity transformation example یک مثال از تبدیل همانندی:6 مثال 3 6 4 6 x 1 2 2 x 3u 1 6 6 4 y [ 2 2 1]x 2 - 1 2 P 1 1 1 - 1 - 1 - 1 2 1 2 2 4 3 1 0 2 0 Aˆ PAP1 0 1 0 0 0 4 Eigenvalues of A A مقادیر ویژه 4.9 bˆ Pb 0 3 cˆ cP 1 [ 0.4 0.6 0] dˆ d 0 Eigenvector corresponding to -2 2 w 0 0 y [ 0 .4 0 4 .9 1 0 w 0 u 3 0 4 0 1 2 2 4 3 1 Eigenvalues of   مقادیر ویژه 0.6 0]w New system is very simpler than older 20 Dr. Ali Karimpour Feb 2013 Similarity transformation and eigenvalues lecture6 تغییر متغیرها و مقادیر ویژه x Ax bu y cx du z Aˆ z bˆu y cˆz dˆu Eigenvalues of A A مقادیر ویژه Eigenvalues of   مقادیر ویژه sI A 0 sI Aˆ 0 1 1 sI Aˆ sI PAP 1 PsP PAP P sI A P 1 sI Aˆ sI A sI A Similarity transformation does not affect the 21 eigenvalues of the systemDr. Ali Karimpour Feb 2013 lecture6 Exercise 1- Find the state diagram of the following system 2 1 3 0 x 0 3 2 x 1 u 1 4 1 0 2- Find the transfer function of the following system. a) By use of the formula between the two representation. 2 1 3 b) By use of state diagram x 0 1 0 3 2 x 1 u 4 1 0 y [1 2 0]x 3- Find y(t) for initial condition [1 3 -1]T and the unit step as 2 1 3 0 input. x 0 3 2 x 1 u 1 4 1 0 22 y [1 2 Dr.0Ali ]x Karimpour Feb 2013 lecture6 Exercise (cont.) 4- The state transition matrix and state transition equation of following system. 1 3 1 X (t ) X (t ) 2 r (t ) 0 4 Answer is: (t ) L1 ( sI A) 1 e t X (t ) 0 3 1 1 t 2 s 1 3 L1 s 1 s 5s 4 e L1 0 s 4 1 0 0 s 4 ( t ) t e e t e 4t X ( 0 ) 0 0 e 4t e t e 4 t e 4t e (t ) e 4(t ) 1 R( )dt e 4 (t ) 2 5- Suppose x1(0)=1, x2(0)=3 and x3(0)=2 and r(t)=u(t) . Find x(t) and c(t) for t≥0 1 4 0 1 X (t ) 2 2 1 X (t ) 1 r (t ) 0 0 3 0 c(t ) [1 0 0] X (t ) 23 Dr. Ali Karimpour Feb 2013
© Copyright 2026 Paperzz