S.L.J Tea Sci. 69(1 & 2), 5-19,2004, Printed in Sri Lanka (Reproduced from the Proceedings of the First Symposium on Plantation Crop Research published in July 8-9, 2004) Boundary-Line Approach in Specifying Nutrient Diagnosis Ranges for Vegetatively Propagated Tea in Sri Lanka 2 *G P Gunaratne, ' L S K Hettiarachchi and A N Jayakody 'Soils a n d P l a n t N u t r i t i o n D i v i s i o n , T e a R e s e a r c h I n s t i t u t e o f S r i L a n k a , T a l a w a k e l l e , Sri Lanka d e p a r t m e n t o f S o i l Science, F a c u l t y o f A g r i c u l t u r e , U n i v e r s i t y o f P e r a d e n i y a , Peradeniya, Sri Lanka ABSTRACT A relatively new approach, the 'boundary line' approach, for objectively assessing cause-and-effect relationships in biology, was made to a systematically-collected set o f data, representing climates, soils, ownerships and management practices, from the present distribution o f vegetatively-propagated tea plantations in the corporate sector o f Sri Lanka. This was primarily to investigate whether this technique could be used to study tea nutrition and determine nutrient sufficiency or deficiency, and to investigate whether diagnosis ranges for vegetativelypropagated tea could be upgraded with a view to using leaf analysis as an effective diagnostic tool. Accordingly, nutrient diagnosis ranges were arrived at f o r nitrogen ( N ) , phosphorus ( P ) , potassium ( K ) , sulphur (S) and magnesium ( M g ) , and rated as 'optimum', 'deficient', 'low' and 'excess'. The optimum nutrient ranges are 2.78 3.39, 0.12 - 0.15, 0.91 - 1.24, 0.23 - 0.37, and 0.13 - 0.22, respectively. A n attempt was also made to compare the diagnosis ranges with those ranges currently in use in Sri Lanka, and other tea-growing countries. I t is apparent that the 'optimum' leaf-nutrient ranges for tea in Sri Lanka had been fixed using a limited set o f information, representing a limited number o f areas. Hence, the nutrient diagnosis ranges established using the boundary line approach, can be used to improve the utility o f plant testing in tea when more precise interpretation and/ or more narrow ranges o f critical values are warranted. K e y w o r d s : b o u n d r y l i n e a p p r o a c h , nutrients c r i t i c a l values 5 INTRODUCTION T e a i n S r i L a n k a is p l a n t e d f r o m a l m o s t m e a n sea l e v e l t o a r o u n d 2 2 0 0 m e t r e s a b o v e m e a n sea l e v e l , i n t h e w e t a n d i n t e r m e d i a t e zones o f the country. O f t h e t e a e x t e n t , a p p r o x i m a t e l y 4 6 % a r e u n d e r o l d s e e d l i n g w h i l e t h e rest is v e g e t a t i v e l y p r o p a g a t e d ( V P ) t e a w i t h h i g h y i e l d p o t e n t i a l . T h e t e a lands are classified as h i g h - ( a b o v e 1 2 0 0 m ) , medium- (between 600-1200 m ) and l o w - grown (below 6 0 0 m ) , depending o n the e l e v a t i o n o f t h e green leaf-processing f a c t o r i e s . T h i s classification o r i g i n a t e d i n t h e e a r l y d a y s o f t e a p r o d u c t i o n , a n d is p r i m a r i l y t o h e l p c o n s u m e r s t o r e c o g n i z e t h e characteristics o f m a d e tea a v a i l a b l e f o r sale. T h e soils present i n the t e a - g r o w i n g areas f a l l into three large groups, n a m e l y R e d Y e l l o w Podzolic ( R Y P ) , Reddish B r o w n Latasolic ( R B L ) and Immature B r o w n L o a m ( I B L ) ( M o o r m a n a n d P a n a b o k k e , 1 9 6 1 ) . A c c o r d i n g t o the U S D A s o i l t a x o n o m i c c l a s s i f i c a t i o n ( A n o n . , 1 9 7 5 ) , t h e R Y P a n d R B L groups a r e regarded as a n order U l t i s o l w h i l e I B L is r e g a r d e d as I n c e p t i s o l . Besides these large groups, the soils o f the w e t z o n e have been p r o v i s i o n a l l y characterized and classified into series levels, using b o t h t h e U S D A and F A O / U N E S C O systems ( M a p a et a l . , 1 9 9 9 ) . A c c o r d i n g l y , 13 m a i n series h a v e b e e n r e c o g n i z e d f r o m the f o l l o w i n g t e a g r o w i n g areas: M a t t a k e l l e , M a s k e l i y a , N u w a r a E l i y a , Kandy, U k u w e l l a , A k u r a n a , M a l a b o d a , Pallegoda, Weddagala, and Dodangoda, Ragala, Badulla and Mahawalatenne. A n n u a l r a i n f a l l , m e a n temperature a n d t h e d u r a t i o n o f m e a n a n n u a l sunshine v a r y w i d e l y w i t h i n t h e t e a - g r o w i n g areas i n S r i L a n k a . T h e c l i m a t i c conditions, together w i t h t h e soil p r o p e r t i e s at a g i v e n l o c a t i o n , d e t e r m i n e t h e l a n d use a n d m a n a g e m e n t r e q u i r e m e n t s . F o l l o w i n g this criterion, the areas w i t h s i m i l a r c l i m a t i c and soil conditions w e r e i d e n t i f i e d a n d d e m a r c a t e d as a g r o - e c o l o g i c a l regions ( A E R ) ( P a n a b o k k e a n d K a n n a n g a r a , 1 9 7 5 ) . A c c o r d i n g l y , 12 A E R s h a v e b e e n i d e n t i f i e d w i t h i n t h e t e a - g r o w i n g areas ( s e e F i g . 1). H o w e v e r , t h e rate o f g r o w t h , a n d i n t u r n t h e p r o d u c t i o n o f harvestable shoots f r o m a g i v e n site, p r i m a r i l y depend o n t h e interactive r o l e o f c l i m a t e , soil a n d p l a n t factors, t o g e t h e r w i t h a host o f m a n a g e m e n t practices. G e n e r a l l y , t h e r e is a basic relationship b e t w e e n the concentration o f a p l a n t n u t r i e n t a n d t h e g r o w t h r a t e , o r y i e l d , o f the p l a n t ( D o w a n d R o b e r t s , 1 9 8 2 ; M e n g e l a n d K i r k b y , 1 9 8 7 ) . O v e r t h e range o f this r e l a t i o n s h i p , t h e critical nutrient range o f c o n c e n t r a t i o n ( C N R ) o r sufficiency range is a n a r r o w r a n g e , a b o v e w h i c h , w i t h a reasonable c o n f i d e n c e , t h e p l a n t is a m p l y supplied, and b e l o w w h i c h t h e plant is d e f i c i e n t ( D o w a n d R o b e r t s , 1 9 8 2 ) . Plant-tissue analyses p r o v i d e a satisfactory basis f o r d e t e r m i n a t i o n o f t h e r e l a t i v e p r o p o r t i o n o f nutrients present i n plants a n d / o r a v a i l a b l e i n soils. I n S r i L a n k a , t h e m o t h e r leaf, i n w h o s e a x i l a p l u c k a b l e shoot has d e v e l o p e d , has b e e n s h o w n t o b e t h e m o s t 6 Agaro-Ecological Region Boundary suitable f o r m o s t p l a n t nutrient analyses, and also f o r the diagnosis o f m o s t nutrient deficiencies a n d excesses ( H a s s e l o , 1 9 6 5 ; W i c k r e m a s i n g h e a n d K r i s h n a p i l l a i , 1 9 8 6 ) . H o w e v e r , f o r f o l i a r analysis the first and/or t h i r d l e a f o f t h e p l u c k a b l e shoot f r o m the bud is s a m p l e d in East A f r i c a ( T o l h u r s t , 1 9 7 2 ; W i l l s o n , 1 9 7 4 ) , w h i l e the u p p e r m o s t mature l e a f is s a m p l e d in K e n y a ( O t h i e n o , 1 9 8 8 ) . L e a f analysis is b e i n g increasingly used as a diagnostic t o o l f o r p e r e n n i a l crops. T h e concentration o f nutrients i n the plant tissue reflects w h a t the plant has o b t a i n e d f r o m the s o i l , i n r e l a t i o n t o its g r o w t h up to the t i m e o f s a m p l i n g . I t is based o n the p r i n c i p l e that the nutrient levels reflect f e r t i l i t y factors a f f e c t i n g the g r o w t h o f the plant. L e a f - n u t r i e n t c r i t e r i a c a n also be d e v e l o p e d f r o m the relationship b e t w e e n plant-nutrient concentration a n d plant p e r f o r m a n c e , o r y i e l d , in f e r t i l i z e r treatments. H o w e v e r , several years are o f t e n r e q u i r e d b e f o r e crops respond t o a d d e d fertilizer, and m a n y years o f f i e l d data, collected o v e r a range o f c o n d i t i o n s , are required to d e v e l o p critical concentrations o r ranges. A p a r t f r o m the t i m e d u r a t i o n , in t h e case o f v e g e t a t i v e l y - p r o p a g a t e d tea in Sri L a n k a , there exist variations a m o n g the cultivars or clones o w i n g to clonal characteristics, and w i d e variations in soil a n d c l i m a t i c conditions. 7 A r e l a t i v e l y n e w a p p r o a c h to t h e study o f c r o p p r o d u c t i v i t y has b e e n d e v e l o p e d , i n w h i c h the p e r f o r m a n c e o f the best i n the s a m p l e e x a m i n e d is t a k e n as a standard against w h i c h t o j u d g e the r e m a i n d e r ( W e b b , 1 9 7 2 ) . T h i s is o n t h e a s s u m p t i o n that there exist reasons other t h a n c h a n c e , w h i c h accounts f o r the i n f e r i o r p e r f o r m a n c e o f part o f t h e p o p u l a t i o n . A s a n e x a m p l e , w h e n t h e points i n r e l a t i o n t o nutrient status and c r o p y i e l d , o r r e l a t i v e y i e l d , are p l o t t e d i n a scatter d i a g r a m , there is a l w a y s a l i n e o n t h e u p p e r e d g e o f the d a t a range. I t represents t h e highest y i e l d s observed o v e r the range o f nutrient values m e a s u r e d , a n d is called t h e 'boundary line'. T h e boundary line also describes the response t o v a r i a t i o n i n the test parameter, w h e r e a l l the other factors d o n o t l i m i t crop y i e l d ( L a r k , 1 9 9 7 ; S c h n u g et a l . , 1 9 9 6 ; W e b b , 1 9 7 2 ) . W a l w o r t h et a l . ( 1 9 8 6 ) a n d E v a n y l o a n d S u m n e r ( 1 9 8 7 ) o p i n e d that it is possible t o use t h e b o u n d a r y - l i n e a p p r o a c h t o q u i c k l y d e r i v e s u f f i c i e n c y ranges f o r nutrients a n d o t h e r parameters. S u r v e y i n g tissue c o m p o s i t i o n i n h i g h l y p r o d u c t i v e fields has b e e n r e c o g n i z e d as a t o o l i n establishing s u f f i c i e n c y nutrient ranges ( P o o v a r o d o m a n d C h a t u p o t e , 2 0 0 2 ) . S e v e r a l researchers h a v e e f f e c t i v e l y used this t e c h n i q u e f o r v a r i o u s crops ( H a n e k l a u s e a n d S c h n u g , 1 9 9 4 ; K h i a r i et a l . , 2 0 0 1 ; P o o v a r o d o m a n d C h a t u p o t e , 2 0 0 2 ; S u l l i v a n et a l . , 1 9 9 6 ; W a l w o r t h a n d K i l b y , 2 0 0 2 ; Z h e n m i n et a l . , 1 9 9 9 ) . O p t i m u m o r c r i t i c a l n u t r i e n t levels, or n o r m s , or standards, a n d e v e n ranges, h a v e b e e n established i n tissues f r o m survey databases using this t e c h n i q u e : f o r S i n o i l s e e d r a p e g r o w n in N o r t h e r n G e r m a n y ( H a n e k l a u s e and S c h n u g , 1 9 9 4 ) , f o r P i n potatoes g r o w n i n Q u e b e c ( a c r i t i c a l n u t r i e n t diagnostic i n d e x , K h i a r i et a l . , 2 0 0 1 ) , a n d f o r N , P, K , C a , M g and Z n in d u r i a n g r o w n i n eastern T h a i l a n d ( P o o v a r o d o m and C h a t u p o t e , 2 0 0 2 ) . H o w e v e r , h a r d l y a n y i n f o r m a t i o n w a s f o u n d o n the a p p l i c a t i o n o f this t e c h n i q u e f o r crops g r o w n in Sri Lanka. T h e o b j e c t i v e o f this study w a s t o f i n d out w h e t h e r n u t r i e n t sufficiency, o r diagnosis ranges, f o r v e g e t a t i v e l y - p r o p a g a t e d t e a c o u l d be established using a large b o d y o f s u r v e y data, c o l l e c t e d f r o m t h e e n t i r e t e a - g r o w i n g area i n t h e country. MATERIALS AND METHODS Survey methodology A n i s l a n d - w i d e s u r v e y w a s c a r r i e d o u t d u r i n g J u l y 2 0 0 1 - M a r c h 2 0 0 3 t o collect d e t a i l e d i n f o r m a t i o n from V P t e a fields i n 2 0 0 corporate-sector estates, o u t o f a total o f a b o u t 4 0 0 , representing d i f f e r e n t c l i m a t e factors, s o i l , o w n e r s h i p , a n d p l a n t a t i o n m a n a g e m e n t practices. H i g h - y i e l d i n g f i e l d s , not m o r e t h a n 10 to I S years after first c a n o p y p r u n i n g , w e r e chosen. I n g e n e r a l , n o nutrient d e f i c i e n c y s y m p t o m s w e r e observed i n t h e c h o s e n 8 fields. The survey was primarily to identify the factors affecting responses to applied fertilisers, with special emphasis on potash and sulphur. A multi-stage sampling method was used to select the estates, as shown in Fig. 2. Detailed information, on field management practices, bush characteristics, pest and disease records, yield data, and climate and site characteristics, was collected from a selected VP tea field on each estate. STAGE1 (Rainfall zone) 1' STAGE2 (Elevational category) Up Mid STAGE3 (AER) WUl WU2 | Low WU3 STAGE4 (Tea Planting District) STAGE5 (Plantations company) Maskeliya Agarapatna STAGE6 (Estate) 9 Estates 4 Estates Fig 2 . Multistage sampling scheme for the Islandwide survey 9 Sampling procedure T h e first m a t u r e leaf, f r o m w h o s e a x i l t h e p l u c k a b l e shoot emerges, w a s s a m p l e d f o r l e a f - n u t r i e n t analysis. T h e s a m p l e d leaves w e r e d r i e d o v e r n i g h t a t 8 0 ° C , a n d g r o u n d i n a leaf-grinding mill. Leaf nutrient analysis A g r o u n d l e a f s a m p l e ( 0 . 2 g ) w a s placed i n a d i g e s t i o n t u b e , a n d ashed i n a m u f f l e f u r n a c e o v e r n i g h t a t 4 8 0 ° C . T h e ash content was dissolved i n 0.5 m l o f digestion m i x t u r e ( H C 1 : H N 0 : H 0 i n t h e p r o p o r t i o n 1:1:2), a n d d r i e d a g a i n o v e r a h o t plate. 3 2 Ten m l o f 0.05 M H C 1 solution w a s added t o the dried ash, and m i x e d w e l l . Suitable a l i q u o t s w e r e used t o d e t e r m i n e K a n d M g u s i n g a f l a m e p h o t o m e t e r , a n d a t o m i c absorption spectrophotometer, respectively. Phosphorus w a s determined b y t h e v a n d a m o l y b d a t e m e t h o d ( J a c k s o n , 1 9 5 8 ) , a n d sulphate b y t h e B a C l m e t h o d ( B u t t e r s 2 a n d C h e n e r y , 1 9 5 9 ) , u s i n g a n U V / v i s i b l e spectrophotometer. T h e nitrogen content w a s determined b y the Kjeldhal method (Bremner and M a l v a n e y , 1982). Statistical analysis T h e y i e l d d a t a c o l l e c t e d a n d leaf-nutrient concentrations estimated w e r e t a b u l a t e d , a n d the highest y i e l d s o b s e r v e d o v e r t h e range o f nutrient concentrations (the b o u n d a r y - l i n e points) w e r e selected f o r p l o t t i n g scatter diagrams. M o d e l s (linear, reciprocal, l o g a r i t h m i c , e x p o n e n t i a l a n d p o l y n o m i a l ) w e r e fitted using t h e Statistical A n a l y s i s S y s t e m ( S A S ) , v e r s i o n 6 ( A n o n . , 1 9 9 5 a ) a n d M i c r o s o f t E x c e l ( A n o n . , 2 0 0 0 ) packages. T h e c o e f f i c i e n t 2 o f d e t e r m i n a t i o n ( R ) w a s used t o select t h e best-fitted m o d e l . U s i n g the m a t h e m a t i c a l equation o f the best-fitted boundary l i n e , y i e l d ranges representing l o w , d e f i c i e n t a n d o p t i m u m w e r e e s t i m a t e d as < 6 0 % , 6 0 - 9 0 % , a n d 9 0 - 1 0 0 % , respectively. E x c e s s i v e nutrient ranges, w h i c h p r e s u m a b l y cause d e c l i n e i n y i e l d , w e r e t a k e n t o b e t h e c o n c e n t r a t i o n b e y o n d t h e m a x i m u m p o i n t o f the s u f f i c i e n c y range. RESULTS AND DISCUSSION 2 T h e coefficients o f d e t e r m i n a t i o n (the R v a l u e s ) , w h i c h is a n indicator o f t h e degree o f v a r i a t i o n i n a d a t a set ( t h e 'goodness'), a n d e x p l a i n e d b y t h e regression m o d e l s o n t h e highest y i e l d s o v e r t h e r a n g e o f l e a f nutrient c o n c e n t r a t i o n , a r e g i v e n i n T a b l e 1 , a l o n g 2 w i t h their respective p r o b a b i l i t y values. T h e R values, e x p l a i n e d b y the regression m o d e l s fitted c o n v e n t i o n a l l y t o select the best regression o n y i e l d o v e r the nutrient ranges, a r e also g i v e n , a l o n g w i t h t h e i r respective p r o b a b i l i t y v a l u e s , i n T a b l e 2 . 10 T h e best-fitted m o d e l s f o r the highest y i e l d observed o v e r the n i t r o g e n ( N ) , phosphorus ( P ) , potassium ( K ) , m a g n e s i u m ( M g ) a n d sulphur ( S ) ranges, w h i c h are i n f a c t the bestfitted b o u n d a r y lines, are s h o w n in F i g s . 3 t o 7 , a l o n g w i t h their respective distributions o f t o t a l s a m p l e populations, as scatter d i a g r a m s . 2 T h e R values have been s i g n i f i c a n t l y i m p r o v e d , f o l l o w i n g the e l i m i n a t i o n o f i n f e r i o r p e r f o r m a n c e s b y a part o f the p o p u l a t i o n ( c o m p a r e values g i v e n i n T a b l e s 1 and 2 ) . 2 B a s e d o n the R values o f m o d e l s tested f o r d e t e r m i n i n g best-fitted b o u n d a r y lines, and t h e i r P v a l u e s , it w a s f o u n d that t h e p o l y n o m i a l m o d e l s s a t i s f a c t o r i l y d e s c r i b e t h e variations in diverse s a m p l e p o p u l a t i o n s a c c o u n t i n g f o r 18 t o 4 7 % ( T a b l e 1). T h i s is p a r t i c u l a r l y so, as the goodness o f f i t (the. R 2 v a l u e ) p r i m a r i l y indicates t h e possible c a u s e - a n d - e f f e c t relationship e x i s t i n g b e t w e e n t w o variables, despite t h e p o o r level o f significance f o r a g i v e n m o d e l o f regression as P values indicate the degree o f p r o b a b i l i t y f o r r e p e t i t i o n . I n fact, the degree o f v a r i a t i o n accounted f o r in the case o f K w a s 2 5 % , w h i c h w a s e v e n higher t h a n f o r S , a l t h o u g h their P values w e r e 0 . 4 2 9 1 a n d 0 . 0 4 3 1 , r e s p e c t i v e l y ( T a b l e 1). T a b l e 1 . Coefficient of determination for different m o d e l s fitted to select t h e best boundaryline regression on t h e h i g h e s t yields o v e r t h e nutrient r a n g e s . M o d e l ; [Yield = f (plant nutrient concentration)] Linear P K S Mg Logarithmic Exponential Polynomial 2 Co-efficient o f d e t e r m i n a t i o n ( R ) Nutrient N Reciprocal 0.138 (0.1421) 0.039 (0.5003) 0.082 (0.4547) 0.107 (0.0591) 0.237 (0.0185) 0.226 (0.0536) 0.002 (0.8808) 0.031 (0.6513) 0.050 (0.2033) 0.082 (0.1859) 0.183 (0.0867) 0.014 (0.6829) 0.056 (0.5416) 0.079 (0.1075) 0.154 (0.0645) 0.031 (0.4994) 0.044 (0.4742) 0.110 (0.3824) 0.117 (0.477) 0.257 (0.0135) * Probability v a l u e s (or level o f significance) a r e given in p a r e n t h e s i s 11 0.474 (0.0112) 0.340 (0.0661) 0.246 (0.4291) 0.184 (0.0431) 0.311 (0.0023) T a b l e 2 . Coefficient of d e t e r m i n a t i o n for different m o d e l s fitted conventionally to s e l e c t t h e b e s t r e g r e s s i o n o n t h e yields o v e r t h e nutrient r a n g e s . M o d e l ; [Yield = f (plant nutrient c o n c e n t r a t i o n ) ] Linear Reciprocal Logarithmic Exponential Polynomial 2 Nutrient Co-efficient of d e t e r m i n a t i o n ( R ) 0.004 (0.50f6) 0.190 (0.0001) 0.024 (0.0947) 0.078 (0.0022) 0.003 (0.5640) N P K S Mg 0.008 (0.3355) 0.143 (0.0001) 0.026 (0.0828) 0.067 (0.0049) 0.002 (0.6379) 0.006 (0.4114) 0.169 (0.0001) 0.025 (0.0869) 0.074 (0.0021) 0.002 (0.6038) 0.001 (0.8177) 0.193 (0.0001) 0.022 (0.1102) 0.079 (0.0022) 0.003 (0.5512) 0.002 (0.6010) 0.205 (0.0001) 0.023 (0.1065) 0.079 (0.0021) 0.003 (0.5212) * Probability v a l u e s (or level of significance) a r e g i v e n in p a r e n t h e s i s N u t r i e n t diagnosis ranges f o r t h e V P t e a distribution w e r e established f o r t h e first t i m e f r o m a single data set s y s t e m a t i c a l l y collected, using t h e best-fitted p o l y n o m i a l b o u n d a r y l i n e e q u a t i o n w i t h respect to s t a n d a r d i z e d y i e l d categories, as d e f i n e d a n d g i v e n i n T a b l e 3 . A n a t t e m p t w a s also m a d e t o c o m p a r e t h e diagnosis ranges w i t h t h e r a n g e o r ranges c u r r e n t l y in use b o t h in S r i L a n k a ( T a b l e 3 ) , and in other t e a g r o w i n g countries ( T a b l e 4 ) , w i t h a v i e w t o u p g r a d i n g l e a f - n u t r i e n t standards. 2 Yield = - 7 8 7 * N + 5275*N - 6113 4000-1 A - Boundary line O - Other ^ 3000 H x: J 2000 -J 1000 - i o > —i— 2.0 2.5 0° — i — —i 3.0 i— 3.5 4.0 Leaf N Concentration (%) —i 4.5 Fig 3. The best fitted boundary line for N concentration and yield. 12 Yield = -159032'F* + 4 9 5 8 0 * P - 1 0 3 4 A - Boundary line O - Other 4000 ^•3000 IB •5 11000 0.08 0.12 0.16 0.20 0.24 Leaf P Concentration (%) F i g 4. T h e best fitted boundary line for P concentration and yield. Yield = -2615*K? + 6555*K - 1 0 2 8 A - Boundary line O - Other 4000-1 -£3000 CO .22000 £ 1000 o o 0.8 o i 1 i 1.2 1.6 2.0 Leaf K Concentration (%) Fig 5 . T h e best fitted boundary line for K concentration and yield. 8 Yield = - 1 1 5 5 4 * S + 8 7 5 7 * S + 1 0 1 7 4000 A - Boundary line O -Other A A A A 0 A A Oo O 020 A A A 1 I I 1 I 0.30 0.40 0.50 0.60 0.70 Leaf S Concentration (%) Fig 6 . T h e best fitted boundary line for S concentration and yield. 13 2 Yield = - 2 9 2 6 0 * M g + 130S4*Mg + 1 2 1 4 • - Boundary line O - Other 4000 3000 JZ ! » 2000 $ 1000 0.10 0.20 0.30 0.50 0.40 Leaf M g Concentration (%) Fig 7. The best fitted boundary line for M g concentration and yield. T a b l e 3. A c o m p a r i s o n b e t w e e n t h e ' o p t i m u m ' nutrient r a n g e s currently in u s e in Sri L a n k a , a n d nutrient diagnosis r a n g e s obtained f r o m the boundary-line technique. P l a n t nutrient (%) Nitrogen Phosphorus Potassium Sulphur Magnesium Nutrient d i a g n o s i s r a n g e s o b t a i n e d f r o m b o u n d a r y line t e c h n i q u e Low < 2.19 < 0.56 <0.08 <0.04 0.56-0.91 0.08-0.23 0.04-0.13 <0.07 Deficient 2.19-2.78 0.07- Optimum 2.78- 0.12-0.15 0.91-1.24 0.23-0.37 0.13-0.22 0.15 > 1.24 > 0.37 > 0.22 > Excess 3.39 3.39 > 0.12 N u t r i e n t r a n g e s currently in u s e * 3.00-4.00 0.2-0.30 1.50-2.00 0.20- 0.30 0.20 > Anon, (1995b)* Source: Anon. (1995b)* I n spite o f the heterogeneous nature o f seedling tea a n d v a r i a t i o n s a m o n g the cultivars o w i n g t o v a r i e t a l characteristics, a n d the w i d e variations in soil a n d c l i m a t i c c o n d i t i o n s , a range f o r each nutrient supposedly ' o p t i m u m ' ( T a b l e 3 ) h a v e b e e n a r r i v e d at. T h e s e ranges appear t o h a v e b e e n d e v e l o p e d f r o m a large b o d y o f d a t a o n g r o w t h and y i e l d responses to nutrient status u n d e r d i f f e r e n t e x p e r i m e n t a l c o n d i t i o n s o v e r a l o n g p e r i o d o f t i m e , a l o n g w i t h the a n a l y t i c a l data generated o n s o i l - a n d leaf- samples a n d submitted b y plantations f o r the last t w o t o three decades ( J a y m a n a n d S i v a s u b r a m a n i u m , 14 T a b l e 4 . Critical levels of nutrients in t h e u p p e r m o s t m a t u r e a n d third leaf of the pluckable shoot, e s t a b l i s h e d by K e n y a a n d E a s t Africa respectively P l a n t nutrient (%) Nitrogen Phosphorus Potassium Sulphur Magnesium Critical levels of nutrients in t h e u p p e r m o s t m a t u r e leaf * Deficient <3.0 < 0.15 < 1.20 Borderline 3.0-3.5 0.15-0.17 1.20-1.50 Adequate 3.5 > 0.17 > 1.50 > - < 0.10 - Critical levels of nutrients in t h e third leaf o f a shoot ** Deficient 3.00 0.35 1.60 - 0.05 Subnormal 4.00 0.40 2.00 0.05 0.10 Normal 5.00 0.50 3.00 0.50 0.30 S o u r c e s ; O w u o r a n d W a n y o k a ( 1 9 8 3 ) * ; a n d B o n h e u r e a n d Willson ( 1 9 9 2 ) ' 1980; Pethiyagoda and Krishnapillai, 1 9 7 0 ; Sivasubramanium and Jayman, 1 9 7 6 ; W e t t a s i n g h e a n d W a t s o n , 1 9 8 0 ) . C o n t r a r y t o the o p t i m u m N a n d K ranges g i v e n , results f r o m a recent t r i a l , o v e r a five-year p r u n i n g c y c l e , s h o w e d that the s u f f i c i e n c y range f o r l e a f N v a r i e d f r o m 3 t o 3 . 5 % , a n d f o r l e a f K f r o m 1.25 t o 1 . 5 % ( H e t t i a r a c h c h i et a l . , 2003). T h e m a x i m u m concentrations o f the best-fitted p o l y n o m i a l b o u n d a r y lines, as s h o w n in F i g s . 3 to 5, w e r e 3 . 3 9 , 0 . 1 5 a n d 1.24 % w h i l e the o p t i m u m ranges w e r e 2 . 7 8 - 3 . 3 9 , 0 . 1 2 - 0 . 1 5 and 0 . 9 1 - 1.24, f o r N , P and K , respectively. T h e s e ranges are l o w e r t h a n the o p t i m u m ranges c u r r e n t l y used in Sri L a n k a , e x c e p t f o r S and M g ( A n o n . , 1 9 9 5 b ) . • A study w a s carried o u t b y P e t h i y a g o d a and K r i s h n a p i l l a i ( 1 9 7 0 ) o n the m i n e r a l nutrition o f t e a b y i n d u c i n g m a j o r n u t r i e n t deficiencies in sand culture. T h e y d i d this b y e x c l u d i n g f r o m the supplied solution a single nutrient at a t i m e , and w e r e able to establish the l e a f N , P, K , C a and M g concentrations associated w i t h d e f i c i e n c y s y m p t o m s . R e c o v e r y to n o r m a l c y f o l l o w e d restoration o f nutrient supply. T h e results o f nutrient analyses o f s o i l - and leaf-samples f r o m the first-ever designed 3 3 N P K factorial trial o n l o w j a t seedling tea, t a k e n in c o n j u n c t i o n w i t h the c o r r e s p o n d i n g y i e l d s f o l l o w i n g l o n g - t e r m f e r t i l i z a t i o n , s h o w e d that l e a f K reached a m a x i m u m v a l u e o f a p p r o x i m a t e l y 1 . 8 % w h e n t h e w a t e r - s o l u b l e soil K content w a s around 12 p p m , w i t h 1 the y i e l d response at 8 4 k g K j O ha"' y r ( S i v a s u b r a m a n i u m and J a y m a n , 1 9 7 6 ) . S i m i l a r l y , P reached a p p r o x i m a t e l y 0 . 2 4 % w h e n the b o r a x - e x t r a c t a b l e soil P w a s a r o u n d 2 0 p p m , 1 w i t h the y i e l d response at 3 3 k g P 0 ha" y r ' ( J a y m a n and S i v a s u b r a m a n i u m , 1 9 8 0 ) . It 2 5 15 appears that these values m a y also h a v e b e e n t a k e n into consideration w h e n the o p t i m u m n u t r i e n t ranges c u r r e n t l y in use w e r e a r r i v e d at, in spite o f o b v i o u s differences b e t w e e n seedling and V P tea. W e t t a s i n g h e a n d W a t s o n ( 1 9 8 0 ) studied t h e effect o f three levels o f N , P, K a n d M g o n l e a f - n u t r i e n t c o m p o s i t i o n , using l o n g - t e r m fertiliser trials w i t h V P teas g r o w n i n l o w c o u n t r y c o n d i t i o n s . T h e y f o u n d that increasing t h e rate o f N fertiliser resulted i n a n increase i n l e a f - N c o n c e n t r a t i o n . A l t h o u g h t h e l e a f - N c o n c e n t r a t i o n increased w i t h increasing l e v e l s o f N fertiliser at each l o c a t i o n , the relationship w a s n o t q u i t e clear w h e n t h e d a t a w e r e p o o l e d , i n d i c a t i n g the possible i n f l u e n c e o f other factors such as c l i m a t e , soil t y p e a n d c l o n e , o n the l e a f - N content. T h e authors o p i n e d that there appeared t o b e a f i n e b a l a n c e b e t w e e n N , K a n d M g , b u t f e l t it w a s p r e m a t u r e t o a t t e m p t t o d e f i n e critical v a l u e s f o r t h e v a r i o u s nutrients f r o m these results. L a t e l y , a p o t t r i a l c a r r i e d o u t t o test the a g r o n o m i c effectiveness o f increasing rates o f P using E p p a w a l a r o c k phosphate a n d T r i p l e super phosphate o n assessing the g r o w t h o f 8 - m o n t h o l d t e a plants f r o m T R I 3 0 7 2 i n a n U l t i s o l o v e r a p e r i o d o f 10 m o n t h s s h o w e d that the P c o n c e n t r a t i o n o f the first m a t u r e l e a f c o r r e s p o n d i n g t o 9 5 % o f the m a x i m u m dry matter yield was approximately 0 . 1 8 % (Zoysa, 2 0 0 0 ) . N o a t t e m p t w a s m a d e t o c o m p a r e t h e diagnosis ranges a r r i v e d at f r o m t h e m o t h e r leaf, w i t h the c r i t i c a l levels o f nutrients in the t h i r d l e a f o f the shoot ( B o n h e u r e a n d W i l l s o n , 1 9 9 2 ) , as the c o n c e n t r a t i o n o f N , P a n d K i n the f o l i a g e decreases s i g n i f i c a n t l y w i t h l e a f m a t u r i t y ( H e t t i a r a c h c h i et a l . , 1 9 9 7 ) . A l s o , there exist significant d i f f e r e n c e s b e t w e e n the c r i t i c a l levels o f nutrients in the u p p e r m o s t m a t u r e l e a f w h e n c o m p a r e d t o diagnosis ranges in t h e m o t h e r leaf, a l t h o u g h t h e y appeared t o be quite similar. I n g e n e r a l , soil properties are related t o c l i m a t e , parent m a t e r i a l , l a n d r e l i e f a n d changes in use pattern. A s the soils w e r e also c o l l e c t e d s i m u l t a n e o u s l y w i t h l e a f samples f r o m each f i e l d i n this survey, a n attempt w i l l b e m a d e t o correlate a l l t h e p l a n t - a v a i l a b l e soil n u t r i e n t levels w i t h l e a f - n u t r i e n t concentrations, and y i e l d data, i n d u e course f o r a subsequent p u b l i c a t i o n . I t is e v i d e n t t h a t t h e b o u n d a r y - l i n e a p p r o a c h c a n be used t o upgrade n u t r i e n t - d e f i c i e n c y diagnosis in t e a plantations. It is w o r t h w h i l e c o n s i d e r i n g the nutrient diagnosis ranges established f o r V P teas f o r i m p l e m e n t a t i o n . «-» A n o t h e r a d v a n t a g e o f this t e c h n i q u e is the i d e n t i f i c a t i o n o f incipient n u t r i e n t - d e f i c i e n c y p r i o r t o .the presentation o f s y m p t o m s , a n d t h e possibility o f e a r l y c o r r e c t i o n o f such 16 deficiencies t o p r e v e n t a deleterious effect o n t h e o p t i m u m rate o f g r o w t h i n V P t e a plants. CONCLUSION It is a p p a r e n t that t h e so-called o p t i m u m l e a f - n u t r i e n t ranges f o r t e a i n S r i L a n k a h a v e been d e v e l o p e d w i t h l i m i t e d i n f o r m a t i o n f r o m o n l y c e r t a i n areas. I t is n o w necessary t o revise t h e standards, a n d t h e nutrient diagnosis ranges, established using the b o u n d a r y line a p p r o a c h , c a n b e used t o i m p r o v e t h e u t i l i t y o f plant-testing i n tea, w h e n a m o r e precise interpretation a n d n a r r o w e r ranges o f c r i t i c a l values a r e w a r r a n t e d . REFERENCES Anon, 1975 Soil taxonomy: A basic system o f soil classification for making and interpreting soil surveys. U S D A SCS, A g r i . Hand book 4 3 6 , U S Government Printing Office, Washington D C , USA. Anon, 1995 a S A S / E T S User's Guide, Version 6 , 2 n d Edition, S A S Institute, Cary, N C . Anon, 1995 b Field Guide Book. Tea Research Institute, Talawakelle, Sri Lanka; pp. 2 2 - 3 5 . Anon, 2 0 0 0 Microsoft Office 2 0 0 0 , Premium Edition, Microsoft Corporation, U.S.A. Bonheure, D and Willson, K C 1992 Mineral nutrition and fertilizers. In: Tea Cultivation to Consumption (eds. K. C . Willson, M . N . Clifford), pp. 2 6 9 - 3 2 1 . Chapman and H a l l , London. Bremner, J M and Malvaney, C S 1982 Total nitrogen. In: Methods o f Soil Analysis, ed. A L Page, Part 2 , 2 n d Edition, pp. 5 9 5 - 6 2 2 . A m . Soc. Agron., Madison, Wisconsin, U.S.A. Butters, B and Chenery, E M 1959 A rapid method for determination o f total sulphur in soils and plants. Analyst 8 4 , 2 3 9 - 2 4 5 . Dow, A I and Roberts, S 1982 Proposal: Critical nutrient ranges for crop diagnosis. Agronomy. J. 74,401-403. Evanylo, G K and Sumner, M E 1987 Utilization o f boundary line approach in the development o f soil nutrient norms for soyabean production. Commun. Soil Sci. Plant Anal. 1 8 , 1 3 7 9 - 1 4 0 1 . Haneklause, S and Schnug, E 1994 Diagnosis o f crop sulphur status and application o f X - r a y fluorescence spectroscopy for the sulphur determination in plant and soil materials. Sulphur in Agriculture 1 8 , 3 1 - 4 0 Hasselo, H N 1965 T h e nitrogen, potassium, phosphorous, calcium, magnesium, sodium, manganese, iron, copper, boron, zinc, molybdenum and aluminium contents o f tea leaves o f increasing age. Tea Q. 3 6 , 122-136. Hettiarachchi, L S K, Balasingham, S Ananthacumaraswamy, S, Gunaratne, G Pand Warnasiri, H A P 1997 Mineral composition in relation to leaf maturity from 2 0 0 0 , 3000 and 4 0 0 0 clonal series: L e a f analysis as a guide in tea crop nutrition. S. L J .Tea Sci. 65, 11-33. Hettiarachchi, L S K, Ananthacumaraswamy, S, Gunaratne, G P and Zoysa, A K N 2003 Outcome 17 o f a collaborative trial on nitrogen and potassium: Tea Research Institute and Maskeliya Plantations th L t d . Proceedings, 2 0 6 Experiments and Extension Forum, Tea Research Institute, Talawakelle, Sri Lanka. Jackson, M L 1958 Soil Chemical Analysis, pp. 134-182. Prentice H a l l , Inc., Englewood Cliffs, N.J., U.S.A.. Jayman,T C Z and Sivasubramaniam, S 1980 T h e use o f fertilizers for tea in Sri Lanka. 3. Foliar and soil analysis with particular reference to P, C a and M n . Tea Q. 4 9 , 1 3 7 - 1 4 1 . K h i a r i , L, Parent, L E and Tremblay, N 2 0 0 1 The phosphorous compositional nutrient diagnosis range for potato. Agronomy. J. 9 3 , 8 1 5 - 8 1 9 . Lark, R M 1997 A n empirical method for describing the joint effects o f environmental and other variables on crop yield. A n n . A p p l . B i o l . 1 3 1 , 1 4 1 - 1 5 9 . M a p a , R B, Somasiri, S and Nagarajah, S 1999 Soils o f the Wet Zone o f Sri Lanka, p. 2 3 - 3 6 . Soil Science Society o f Sri Lanka, Colombo, Sri Lanka. M e n g e l , K and Kirkby, E A 1987 Principles o f Plant Nutrition, 103-104 pp. International Potash Institute, Bern, Switzerland. M o o r m a n , F R and Panabokke, C R 1961 Soils o f Ceylon. Tropical Agriculturist 1 1 7 , 5 - 6 5 . Othieno, C O 1988 Summary o f recommendations and observations from T R F K . Tea 9 , 5 0 - 6 5 . Owuor, P O and Wanyoko, J K 1983 Fertilizer use advisory service. A reminder to fanners. Tea 4, 3-7. Panabokke, C R and Kannangara, R P K 1975 T h e identification and demarcation o f the agroecological regions o f Sri Lanka. Proc. A n n . Sessions. Sri Lanka Association for the Advancement o f Science 3 1 ( 3 ) , 4 9 . Pethiyagoda, U and Krishnapillai, S 1970 M i n e r a l nutrition in tea. Experimentally induced major deficiency. Tea Q. 3 6 , 4 4 8 - 5 8 . Poovarodom, S and Chatupote, W 2 0 0 2 Boundary line approach in specifying durian nutrient standards. H ^ W C S S , Thailand. Schnug, E, H e y m , J and Achwan, F 1996 Establishing critical values for soil and plant analysis by means o f the boundary line development system (Bolides). Commun. Soil Sci. Plant. A n a l . 2 7 , 2739-2748. Sivasubramaniam, S and Jayman, T C Z 1976 T h e use o f fertilizers for tea in Sri Lanka. 2 . Foliar and soil analysis with particular reference to potassium. Tea Q. 4 6 , 4 - 1 1 . Sullivan, N H , Bolstad, P V and Vose, J M 1996 Estimates o f net photosynthetic parameters for twelve tree species in mature forests o f the southern Appalachians. Tree Physiol. 1 6 , 3 9 7 - 4 0 6 . Tolhurst, J A H 1972 A re-appraisal o f the leaf-analysis advisory service. Tea 1 3 , 1 7 - 2 1 . Wettasinghe, D T and Watson, M 1980 Effect o f nitrogen, phosphorus, potassium and magnesium fertilizers on the leaf nutrient composition o f low grown tea in Sri Lanka. Tea Q. 4 9 , 4 4 - 5 2 . Webb, R A 1972 Use o f the boundary line in the analysis o f biological data. J. Hort. Sci. 4 7 , 3 0 9 319. 18 Walworth, J L, Letzsch, W S and Sumner, M E 1 9 8 6 Use o f boundary lines in establishing diagnostic norms. Soil Sci. Soc. A m . J. 5 0 , 1 2 3 - 1 2 8 Walworth, J L and Kilby, M 2 0 0 2 Pecan leaf tissue nutrient concentrations: Temporal relationships and preliminary standards. Citrus and Deciduous Fruit Research Report, University o f Arizona, College o f Agriculture and L i f e Science. Wickremasinghe, K N and Krishnapillai, S 1986 Plant Tissue Analysis. In Handbook on Tea (eds. P Sivapalan, S Kulasgeram, A Kathiravetpillai), p. 6 3 - 7 7 . Tea Research Institute o f Sri Lanka, Talawakelle, Sri Lanka. Willson, K C 1974 Studies on the mineral nutrition o f tea. 1. Experimental methods. Plant and Soil. 4 1 , 1 - 1 2 . Zhenmin, T Chambers, J L and Barnett, J P 1999 Characterization o f optimum physiological response o f field-grown L o b l o l l y Pine, p. 4 0 9 - 4 1 5 . Tenth Southern Sivicultural Research Conference, Shreveport, L A . Zoysa, A K N 2 0 0 0 T h e fate o f phosphate fertilizers in an Ultisol in Sri Lanka: Phosphorus availability to tea (Camellia sinensis L.). In Plantation tree crops in the new millennium: The way ahead. (Vol 1) E d E. Pushparaj, pp 347-364. The Incorporated Society o f Planters, Kuala Lumpur, Malaysia. 19
© Copyright 2025 Paperzz