M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).737-749 Available online at http://ijdea.srbiau.ac.ir Int. J. Data Envelopment Analysis (ISSN 2345-458X) Vol.4, No.2, Year 2016 Article ID IJDEA-00423, 9 pages Research Article International Journal of Data Envelopment Analysis Science and Research Branch (IAU) Estimate Output of a Production Unit in Production Possibility Set with Fuzzy Inference Mechanism Mohamad Adabitabar firozja a* b , Mohamad Adabi firozjaei , Mousa Eslamian c (a) Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. (b) Department of Management , Babol Branch, Islamic Azad University, Babol, Iran. (c) Phd Student of Management, Semnan Branch, Islamic Azad Universal University, Semnan, Iran. Received 30 June 2016, Revised 13 September 2016, Accepted 26 September 2016 Abstract In this paper, we consider the production possibility set with n production units such that the following four principles that governs: inclusion observations, conceivability, immensity and convexity. Our goal is to estimate the output of a same and new production unit with existing production possibility and amount of input is specified. So, initially we find the interval changes of each inputs and outputs and then partitioning each interval with fuzzy numbers. We use each of the possible to produce with specific inputs and outputs the fuzzy if-then rules and estimate the amount of outputs with mamdany method in fuzzy inference mechanism. In the end, we present an example of implementation. Keywords: Production possibility set, Fuzzy number, Fuzzy inference. * Corresponding Author: [email protected] 957 M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965 1. Introduction present the estimating most productive scale Data Envelopment Analysis (DEA) was size using data envelopment analysis. In this originally proposed by Charnes et al. [7] as a work, in section 2 we present some basic method for evaluating the relative efficiency definitions of DEA, fuzzy numbers and its of Decision Making Units (DMUs) performing property and then inference mechanism. In essentially the same task. Units use similar section 3, we state the the new method for multiple inputs to produce similar multiple estimate output of a production unit with using outputs. DEA deals with the evaluation of the fuzzy inference mechanism with specific performance a input. In section 4, we present one example for transformation process of several inputs to illustration of method. Conclusion is drawn in several outputs. There are several ways to section 5. evaluate the units such as CCR [7], BCC [4] 2. Background and etc. Production units are always looking We provide the contents of two topics, data for the best output. Zadeh in [12], introduced envelopment the concept of fuzzy number. The concept of mechanism. fuzzy numbers and arithmetic operations with 2.1. Data envelopment analysis fuzzy numbers were first introduce and DEA utilizes a technique of mathematical investigated by Chang and Zadeh [6], and programming for evaluation of n DMUs. others. Applications of fuzzy numbers for Suppose indicating uncertain and vague information in ๐ท๐๐1 , ๐ท๐๐2 , โฆ , ๐ท๐๐๐ . Let the input and decision making, linguistic controllers, expert output data for ๐ท๐๐๐ be ๐๐ = (๐ฅ1๐ , โฆ , ๐ฅ๐๐ ) systems, data mining, pattern recognition, etc. and ๐๐ = (๐ฆ1๐ , โฆ , ๐ฆ๐ ๐ ), respectively.[3] of DMU performing were stated in recently published articles analysis there (DEA) are and n fuzzy DMUs: The set of feasible activities is called the [1,2,11]. Systems of fuzzy IF-THEN rules are Production Possibility Set (PPS) and is widely used in applications of fuzzy set theory, denoted by P with the properties: inclusion for example in fuzzy control, identification of observations, conceivability, immensity and dynamic systems, prediction of dynamic convexity, where [8] systems, decision-making, etc. In this paper, ๐ ๐ = (๐, ๐) ๐ โฅ we consider the fuzzy IF-THEN rules method ๐ ๐๐ ๐๐๐ก ๐ก ๐ =1 for problem "Estimate output of a production ๐๐ ๐๐ ๐ก ๐ก ,๐ โค (1) ๐ =1 CCR model [7] for evaluate relative efficiency unit in production possibility set with specific of ๐ท๐๐๐ is as follows, input such that in comparison with similar min units is efficient". Some researchers worked on ๐ ๐ . ๐ก. the estimate output such as in [5], R.D. Banker ๐๐ ๐ฅ๐๐ โค ๐๐ฅ๐๐ ๐ =1 958 ๐ ๐ = 1, โฆ , ๐ (2) M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965 ๐ ๐๐ ๐ฆ๐๐ โค ๐๐ฆ๐๐ and for ๐ โ ๐น ๐ (๐ ) its membership function is ๐ = 1, โฆ , ๐ ๐ =1 ๐๐ โฅ 0, as follows: 0 ๐ฅ โ ๐1 ๐2 โ ๐1 ๐ ๐ฅ = 1 ๐4 โ ๐ฅ ๐4 โ ๐3 0 ๐ = 1, โฆ , ๐ Unit DMU๐ is CCR efficient if the optimal value of the objective function in model (2) equals one (๐ โ = 1). ๐ฅ โค ๐1 ๐1 โค ๐ฅ โค ๐2 ๐2 โค ๐ฅ โค ๐3 ๐3 โค ๐ฅ โค ๐4 ๐4 โค ๐ฅ 2.2 Fuzzy mechanism Where a1 , a2 , a3 , a4 โ R There are many de๏ฌnitions for fuzzy numbers. fuzzy number ๐ is as: We denote set of all fuzzy numbers by ๐น(๐ ) ๐๐ผ = ๐๐ ๐ผ , ๐๐ ๐ผ and de๏ฌne as follows.[9] (6) and ๐ผ โlevel of = [๐1 + ๐2 โ ๐1 ๐ผ , ๐4 โ ๐4 โ ๐3 ๐ผ] (7) Triangular fuzzy numbers are also special De๏ฌnition 1. For fuzzy number ๐ด โ ๐น(๐ ) , we cases of trapezoidal fuzzy numbers with show the membership function by ๐ด(๐ฅ) which ๐2 = ๐3 . is given by ๐ด ๐ฅ = 0 ๐๐ด ๐ฅ 1 ๐๐ด ๐ฅ 0 ๐ฅ โค ๐1 ๐1 โค ๐ฅ โค ๐2 ๐2 โค ๐ฅ โค ๐3 ๐3 โค ๐ฅ โค ๐4 ๐4 โค ๐ฅ 2.2.1 Inference mechanism When we model a knowledge system, it is (3) often represented by the form of fuzzy rule base. The fuzzy rule base consists of fuzzy ifthen rules. The rule base has the form of a Where a1 , a2 , a3 , a4 โ R decreasing and ๐๐ด ๐ฅ and ๐๐ด ๐ฅ is non- MIMO is non-increasing and ๐๐ด ๐1 = 0, ๐๐ด ๐2 = 1, ๐๐ด ๐3 = 1 (multiple input multiple output) system.[10] and ๐๐ด ๐4 = 0 . For any ๐ผ โ 0,1 ; ๐ผ โcut of 2.2.2 Mamdani inference mechanism fuzzy numbe ๐ด is a crisp interval as We assume that we have k fuzzy control rules ๐ด๐ผ = ๐ฅ โ ๐ : ๐ด(๐ฅ) โฅ ๐ผ = ๐ด๐ ๐ผ , ๐ด๐ ๐ผ (4) of the form If ๐ด, ๐ต โ ๐น(๐ ) and ๐ โ ๐ then (A + B)ฮฑ = ๐ ๐ข๐๐1 โถ ๐ผ๐ ๐ฅ 1 ๐๐ ๐ด11 ,· · · , ๐ฅ ๐ ๐๐ ๐ด ๐1 ๐โ๐๐ ๐ด๐ผ + Bฮฑ and A = B, if ๐ด๐ ๐ผ = ๐ต๐ (๐ผ) and ๐ฆ 1 ๐๐ ๐ต11 ,· · · , ๐ฆ ๐ ๐๐ ๐ต๐ 1 ๐ด๐ ๐ผ = ๐ต๐ ๐ผ almost everywhere, ๐ผ โ [0,1]. โฎ (๐๐ด)๐ผ = ๐๐ด๐ ๐ผ , ๐๐ด๐ ๐ผ ๐๐ด๐ ๐ผ , ๐๐ด๐ ๐ผ ๐โฅ0 ๐<0 ๐ ๐ข๐๐ ๐ โถ ๐ผ๐ ๐ฅ 1 ๐๐ ๐ด1๐ ,· · · , ๐ฅ ๐ ๐๐ ๐ด ๐๐ ๐โ๐๐ (5) ๐ฆ 1 ๐๐ ๐ต1๐ ,· · · , ๐ฆ ๐ ๐๐ ๐ต๐ ๐ ๐๐๐๐ก โถ ๐ผ๐ ๐ฅ 1 = ๐ฅ1 ,· · · , ๐ฅ๐ = ๐ฅ๐ Trapezoidal fuzzy numbers are special cases of ๐๐๐๐ ๐๐๐ข๐๐๐๐ โถ ๐ฆ 1 ๐๐ ๐ต1 ,· · · , ๐ฆ ๐ ๐๐ ๐ต๐ fuzzy numbers which are denoted by ๐น ๐ (๐ ) 959 (8) M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965 The ๏ฌring levels of the rules, denoted by units. Without loss of generality argument ๐ผ๐ : ๐ = 1, โฆ , ๐ are computed by suppose that ๐ฅ ๐1 โค ๐ฅ ๐2 โค . . . โค ๐ฅ ๐๐ for ๐โth ๐ผ ๐ = ๐ด1๐ ๐ฅ1 โง โฆ โง ๐ด๐๐ ๐ฅ๐ ; input and ๐ฆ ๐1 โค ๐ฆ ๐2 โค . . . โค ๐ฆ ๐๐ for ๐โth ๐ = 1, โฆ , ๐ 9 output. The individual rule outputs are obtained by Now we partition the interval [๐ฅ๐1 , ๐ฅ๐๐ ] for ๐ถ๐๐ ๐ค๐ = ๐ต๐๐ ๐ค๐ โง ๐ผ๐ ; ๐ = 1, โฆ , ๐, ๐ = 1, . . . , ๐ with triangular fuzzy numbers ๐ = 1, โฆ , ๐ 10 are as follows: ๐ฅ๐2 โ ๐ฅ ๐ด๐1 ๐ฅ = ๐ฅ๐2 โ ๐ฅ๐1 0 ๐ถ๐ ๐ค๐ = ๐ถ๐1 ๐ค๐ โจ โฆ โจ ๐ถ๐๐ ๐ค๐ ; ๐ = 1, . . . , ๐ (11) ๐ฅ๐1 โค ๐ฅ โค ๐ฅ๐2 13 ๐๐กโ๐๐๐ค๐๐ ๐ Finally, to obtain a deterministic control ๐ด๐๐ ๐ฅ action, we employ any defuzzi๏ฌcation strategy ๐ฅ โ ๐ฅ๐ ๐ โ1 ๐ฅ๐๐ โ ๐ฅ๐ ๐ โ1 ๐ฅ๐ ๐ +1 โ ๐ฅ = ๐ฅ๐ ๐ +1 โ ๐ฅ๐๐ 0 [10]. 2.2.3 Middle-of-Maxima defuzzi๏ฌcation If ๐ถ is not discrete then defuzzi๏ฌed value of a fuzzy set ๐ถ is de๏ฌned as [10] ๐0 = ๐บ ๐ง๐๐ง = where ๐บ denotes the set of maximizing element of ๐ถ. ๐ท๐๐๐ โถ ๐ท๐๐1 , ๐ท๐๐2 , โฆ , ๐ท๐๐๐ . Let and also, ๐ต๐1 ๐ฆ ๐ฆ๐2 โ ๐ฆ = ๐ฆ๐2 โ ๐ฆ๐1 0 the input and output data for ๐ท๐๐๐ be ๐ ๐ = ๐ฅ 1๐ , โฆ , ๐ฅ ๐๐ ๐ ๐ = ๐ฆ 1๐ , โฆ , ๐ฆ๐ ๐ , respectively. ๐ต๐๐ ๐ฆ We want to create a new similar production ๐ฆ โ ๐ฆ๐ ๐ โ1 ๐ฆ๐๐ โ ๐ฆ๐ ๐ โ1 = ๐ฆ๐ ๐ +1 โ ๐ฆ ๐ฆ๐ ๐ +1 โ ๐ฆ๐๐ 0 unit with the speci๏ฌed input (14) ๐๐กโ๐๐๐ค๐๐ ๐ we (15) partition the ๐ = 1, . . . , ๐ with triangular fuzzy numbers are as follows: ๐ are ; ๐ = 2, โฆ , ๐ โ 1 ๐ +1 ๐ฅ๐(๐โ1) โค ๐ฅ โค ๐ฅ๐๐ interval [๐ฆ๐1 , ๐ฆ๐๐ ] for with fuzzy Inference mechanism there โค ๐ฅ โค ๐ฅ๐๐ ๐๐กโ๐๐๐ค๐๐ ๐ ๐ฅ โ ๐ฅ๐(๐โ1) ๐ฅ๐๐ โ ๐ฅ๐(๐โ1) 0 And 3 Estimate output of a production units Suppose ๐ฅ๐๐ โค ๐ฅ โค ๐ฅ๐ ๐ โ1 ๐ด๐๐ ๐ฅ 12 ๐๐ง ๐บ ๐ฅ๐ ๐ = (๐ฅ1 , . . . , ๐ฅ๐ ) were new input should be in the convex hull of the units input observed. For this purpose, ๏ฌrst we identify efficient units by ๐ฆ๐1 โค ๐ฆ โค ๐ฆ๐2 16 ๐๐กโ๐๐๐ค๐๐ ๐ ๐ฆ๐ ๐ฆ๐๐ โค ๐ฆ โค ๐ฆ๐ ๐ โ1 ๐ +1 โค ๐ฆ โค ๐ฆ๐๐ ; ๐ = 2, โฆ , ๐ โ 1 ๐๐กโ๐๐๐ค๐๐ ๐ 17 ๐ต๐๐ ๐ฆ existing methods such as ๐ถ๐ถ๐ or ๐ต๐ถ๐ถ, etc. ๐ฆ โ ๐ฆ๐(๐โ1) = ๐ฆ๐๐ โ ๐ฆ๐(๐โ1) 0 Let, ๐ ๐ท๐๐๐ be effective. Then, we arranged increasing order inputs and outputs of effecient 960 ๐ฆ๐(๐โ1) โค ๐ฆ โค ๐ฆ๐๐ ๐๐กโ๐๐๐ค๐๐ ๐ (18) M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965 ๐ = 1, . . . , ๐, ๐ = 1, . . . , ๐ We consider each efficient unit observed as a ๐ = fuzzy control rules as follows for ๐ถ๐ ๐ค๐ = ๐ถ๐1 ๐ค๐ โจ โฆ โจ ๐ถ๐๐ ๐ค๐ ; 1, . . . , ๐: ๐ = 1, . . . , ๐ ๐ ๐ข๐๐1 โถ ๐ผ๐ ๐ฅ 1 ๐๐ ๐ด11 ,· · · , ๐ฅ ๐ ๐๐ ๐ด ๐1 ๐โ๐๐ (22) Finally, to obtain a deterministic control action ๐ฆ 1 ๐๐ ๐ต11 ,· · · , ๐ฆ ๐ ๐๐ ๐ต๐ 1 the outputs, we employ Middle-of-Maxima defuzzi๏ฌcation method. โฎ ๐ ๐ข๐๐ ๐ โถ ๐ผ๐ ๐ฅ 1 ๐๐ ๐ด1๐ ,· · · , ๐ฅ ๐ ๐๐ ๐ด ๐๐ ๐โ๐๐ ๐ฆ 1 ๐๐ ๐ต1๐ ,· · · , ๐ฆ ๐ ๐๐ ๐ต๐ ๐ (21) if ๐ฅ 1 = ๐ฅ1๐ก ,· · · , ๐ฅ ๐ = ๐ฅ๐๐ก , Now for ๐ก = 1, . . . , ๐. (19) With Eq. (20) Where ๐ด๐๐ corresponding to ๐โth input of ๐โth ๐ผ๐ = unit. And also, ๐ต๐๐ corresponding to ๐โth 1 0 ๐=๐ก ๐โ ๐ก (23) With Eq. (21) for ๐ = 1, . . . , ๐ output of ๐โth unit. ๐ต๐๐ก (๐ฆ๐๐ก ) 0 ๐=๐ก ๐โ ๐ก Now suppose the input the new unit is as: ๐ถ๐๐ (๐ค๐ ) = ๐ฅ 1 = ๐ฅ1,· · · , ๐ฅ ๐ = ๐ฅ๐ , And with Eq. (22) for ๐ = 1, . . . , ๐ we obtain with (24) Mamdanis max min method and Middle-of- ๐ถ๐ ๐ค๐ = ๐ถ๐1 ๐ค๐ โจ โฆ โจ ๐ถ๐๐ ๐ค๐ = ๐ต๐๐ก ๐ฆ๐๐ก ; Maxima defuzzi๏ฌcation method the outputs ๐ = 1, . . . , ๐ of ๐ฆ 1 = ๐ฆ1 ,· · · , ๐ฆ ๐ = ๐ฆ๐ . Now, with Middle-of-Maxima defuzzi๏ฌcation (25) method ๐ฆ ๐ = ๐ฆ๐๐ก for ๐ = 1, . . . , ๐. Proposition 1. In provided inference method, interpolation is maintains. In other 3.1 Examples words, if input is: ๐ฅ 1 = ๐ฅ1๐ก ,· · · , ๐ฅ ๐ = ๐ฅ๐๐ก , In this section, we consider 19 ๐ท๐๐๐ with then with Mamdanis max min method and two inputs and two outputs.(Table 1). First, Middle-of-Maxima defuzzi๏ฌcation method we identify efficient units by CCR model the outputs is as y1 = ๐ฆ1๐ก ,· · · , ๐ฆ ๐ = ๐ฆ๐ ๐ก for where has come on table 2 (6 DMUs are ๐ก = 1, . . . , ๐. efficient). To implement the example we use MATLAB software. We partition the interval Proof. With rules (19) and fuzzy partition of [0, 216] (range of input 1) and [0, 203] (range input interval and fuzzy partition of output of input 2) with triangular fuzzy numbers interval, Mamdanis max min method is as regarding to Eqs (13)-(15) are as ๏ฌgures 1 following and 2. And also, we partition the interval ๐ผ ๐ = ๐ด1๐ ๐ฅ1 โง โฆ โง ๐ด๐๐ ๐ฅ๐๐ ; [0, 5368] (range of output 1) and [0, 639] ๐ = 1, . . . , ๐ (20) (range of output 2) with triangular fuzzy numbers regarding to Eqs (16) โ (18) are as The individual rule outputs are obtained by ๐ถ๐๐ ๐ค๐ = ๐ต๐๐ ๐ค๐ โง ๐ผ ๐ ; ๏ฌgures 3 and 4. 961 M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965 Table 1. 19 DMUs with two inputs and two outputs. DMU input 1 input 2 output 1 output 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 81 85 56.7 91 216 58 112.2 293.2 186.6 143.4 108.7 105.7 235 146.3 57 118.7 58 146 0 87.6 12.8 55.2 78.8 72 25.6 8.8 52 0 105.2 127 134.4 236.8 124 203 48.2 47.4 50.8 91.3 5191 3629 3302 3379 5368 1674 2350 6315 2865 7689 2165 3963 6643 4611 4869 3313 1853 4578 0 205 0 0 8 639 0 0 414 0 66 266 315 236 128 540 16 230 217 508 Table 2. DMUs are CCR e๏ฌcient. DMU input 1 input 2 output 1 output 21 1 2 5 9 15 19 81 85 216 186.6 57 0 87.6 12.8 72 0 203 91.3 5191 3629 5368 2865 4869 0 205 0 639 0 540 508 Figure 1: Partition of interval [0, 216] for input 1 with triangular fuzzy numbers. 962 M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965 Figure 2: Partition of interval [0, 203] for input 2 with triangular fuzzy numbers. Figure 3: Partition of interval [0, 5368] for output 1 with triangular fuzzy numbers. Figure 4: Partition of interval [0, 639] for output 2 with triangular fuzzy numbers. 963 M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965 We consider each efficient unit observed as a For example, Approximation output to several fuzzy control rule as ๏ฌgure 5 with partitions of units with speci๏ฌc inputs is shown in Table 3. inputs and outputs. Figure 5: Fuzzy control rules Table 3. Approximation output with known input. Input 1 Input 2 Outnput 1 Outnput 2 ๐๐ =90 ๐๐ =20 ๐ฆ1 โ 3.65๐ + 003 ๐ฆ2 โ 9.58 ๐๐ =200 ๐๐ =80 ๐ฆ1 โ 5.34๐ + 003 ๐ฆ2 โ 613 ๐๐ =118 ๐๐ =42.8 ๐ฆ1 โ 3.76๐ + 003 ๐ฆ2 โ 51.1 ๐๐ =69 ๐๐ =180 ๐ฆ1 โ 4.62๐ + 003 ๐ฆ2 โ 559 Figure 6: Approximation outputs with ๐ฅ1 = 200 and ๐ฅ2 = 80. 964 M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965 4 Conclusions [5] R.D. Banker, Estimating most productive In this paper, we consider the production scale size using data envelopment analysis, possibility set with n production units such European Journal of Operational Research 17 that the following four principles that govern: (1984)35-44. inclusion conceivability, [6] Chang SL, Zadeh LA, On fuzzy mapping immensity and convexity. We proposed a and control. IEEE Trans Sys Man Cybernet method for estimate the output of a same and 1972; 2:304. new production unit with existing production [7] A. Charnes, W.W. Cooper, E. Rhodes, possibility and amount of input is speci๏ฌed. Measuring e๏ฌciency of decision making units, We in Proposition 1. Prove that in this European Operational Research; (1978), 2, inference method, interpolation is maintains. 429-444. In the end, we present an example of [8] W. W. Cooper, L. M. Sieford and K. Tone, implementation. Data envelopment analysis: a comprehensive observations, text with models, applications, References and References DEA Solver Software, Kluwer Academic [1] S. Abbasbandy, M. Adabitabar Firozja, Publishers, 2000. Fuzzy linguistic model for interpolation, [9] Chaos, Solitons and Fractals 34 (2007) 551- Grzegorzewski, M. Adabitabar Firozja, T. 556. Houlari, Piecewise Linear Approximation of [2] M. Adabitabar Firozja, G.H. Fath-Tabar, Z. Fuzzy Numbers Preserving the Support and Eslampia, of Core, In: Laurent A. et al. (Eds.), Information generalized fuzzy numbers based on interval Processing and Management of Uncertainty in distance, Applied Mathematics Letters 25 Knowledge-Based Systems, Part II, (CCIS (2012) 1528-1534. 443), Springer, 2014, pp. 244-254. [3] T. Allahviranloo, F. Hosseinzadeh lot๏ฌ and [10] R. Fullier, Neural Fuzzy Systems, ISBN M. Adabitabar ๏ฌrozja, E๏ฌciency in fuzzy 951-650-624-0, ISSN 0358-5654. production possibility set, Iranian Journal of [11] S. Martin, B. Michal, S. Lenk, Fuzzy Rule Fuzzy Systems Vol. 9, No. 4, (2012) pp. 17- Base Ensemble Generated from Data by 30. Linguistic Associations Mining, Fuzzy Sets [4] R.D. Banker, A. Charnes, W.W. Cooper, and System, Accepted date: 22 April 2015. Some models for estimating technical and [12] L.A. Zadeh, Fuzzy sets, Inform. Control scale 8(1965)338-353. The ine๏ฌciency similarity in data measure envelopment analysis, Manage. Sci 30(1984), pp. 10781092. 965 L. Coroianu, M. Gagolewski, P.
© Copyright 2024 Paperzz