Estimate Output of a Production Unit in Production Possibility Set

M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).737-749
Available online at http://ijdea.srbiau.ac.ir
Int. J. Data Envelopment Analysis (ISSN 2345-458X)
Vol.4, No.2, Year 2016 Article ID IJDEA-00423, 9 pages
Research Article
International Journal of Data Envelopment Analysis
Science and Research Branch (IAU)
Estimate Output of a Production Unit in Production
Possibility Set with Fuzzy Inference Mechanism
Mohamad Adabitabar firozja
a*
b
, Mohamad Adabi firozjaei , Mousa Eslamian
c
(a) Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr,
Iran.
(b) Department of Management , Babol Branch, Islamic Azad University, Babol, Iran.
(c) Phd Student of Management, Semnan Branch, Islamic Azad Universal University,
Semnan, Iran.
Received 30 June 2016, Revised 13 September 2016, Accepted 26 September 2016
Abstract
In this paper, we consider the production possibility set with n production units such that the
following four principles that governs: inclusion observations, conceivability, immensity and
convexity. Our goal is to estimate the output of a same and new production unit with existing
production possibility and amount of input is specified. So, initially we find the interval changes of
each inputs and outputs and then partitioning each interval with fuzzy numbers. We use each of the
possible to produce with specific inputs and outputs the fuzzy if-then rules and estimate the amount of
outputs with mamdany method in fuzzy inference mechanism. In the end, we present an example of
implementation.
Keywords: Production possibility set, Fuzzy number, Fuzzy inference.
*
Corresponding Author: [email protected]
957
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965
1. Introduction
present the estimating most productive scale
Data Envelopment Analysis (DEA) was
size using data envelopment analysis. In this
originally proposed by Charnes et al. [7] as a
work, in section 2 we present some basic
method for evaluating the relative efficiency
definitions of DEA, fuzzy numbers and its
of Decision Making Units (DMUs) performing
property and then inference mechanism. In
essentially the same task. Units use similar
section 3, we state the the new method for
multiple inputs to produce similar multiple
estimate output of a production unit with using
outputs. DEA deals with the evaluation of the
fuzzy inference mechanism with specific
performance
a
input. In section 4, we present one example for
transformation process of several inputs to
illustration of method. Conclusion is drawn in
several outputs. There are several ways to
section 5.
evaluate the units such as CCR [7], BCC [4]
2. Background
and etc. Production units are always looking
We provide the contents of two topics, data
for the best output. Zadeh in [12], introduced
envelopment
the concept of fuzzy number. The concept of
mechanism.
fuzzy numbers and arithmetic operations with
2.1. Data envelopment analysis
fuzzy numbers were first introduce and
DEA utilizes a technique of mathematical
investigated by Chang and Zadeh [6], and
programming for evaluation of n DMUs.
others. Applications of fuzzy numbers for
Suppose
indicating uncertain and vague information in
๐ท๐‘€๐‘ˆ1 , ๐ท๐‘€๐‘ˆ2 , โ€ฆ , ๐ท๐‘€๐‘ˆ๐‘› . Let the input and
decision making, linguistic controllers, expert
output data for ๐ท๐‘€๐‘ˆ๐‘— be ๐‘‹๐‘— = (๐‘ฅ1๐‘— , โ€ฆ , ๐‘ฅ๐‘š๐‘— )
systems, data mining, pattern recognition, etc.
and ๐‘Œ๐‘— = (๐‘ฆ1๐‘— , โ€ฆ , ๐‘ฆ๐‘ ๐‘— ), respectively.[3]
of
DMU
performing
were stated in recently published articles
analysis
there
(DEA)
are
and
n
fuzzy
DMUs:
The set of feasible activities is called the
[1,2,11]. Systems of fuzzy IF-THEN rules are
Production Possibility Set (PPS) and is
widely used in applications of fuzzy set theory,
denoted by P with the properties: inclusion
for example in fuzzy control, identification of
observations, conceivability, immensity and
dynamic systems, prediction of dynamic
convexity, where [8]
systems, decision-making, etc. In this paper,
๐‘›
๐‘ƒ = (๐‘‹, ๐‘Œ) ๐‘‹ โ‰ฅ
we consider the fuzzy IF-THEN rules method
๐‘›
๐œ†๐‘— ๐‘‹๐‘—๐‘ก
๐‘ก
๐‘— =1
for problem "Estimate output of a production
๐œ†๐‘— ๐‘Œ๐‘— ๐‘ก
๐‘ก
,๐‘Œ โ‰ค
(1)
๐‘— =1
CCR model [7] for evaluate relative efficiency
unit in production possibility set with specific
of ๐ท๐‘€๐‘ˆ๐‘˜ is as follows,
input such that in comparison with similar
min
units is efficient". Some researchers worked on
๐‘›
๐‘ . ๐‘ก.
the estimate output such as in [5], R.D. Banker
๐œ†๐‘— ๐‘ฅ๐‘–๐‘— โ‰ค ๐œƒ๐‘ฅ๐‘–๐‘˜
๐‘— =1
958
๐œƒ
๐‘– = 1, โ€ฆ , ๐‘š
(2)
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965
๐‘›
๐œ†๐‘— ๐‘ฆ๐‘Ÿ๐‘— โ‰ค ๐œƒ๐‘ฆ๐‘Ÿ๐‘˜
and for ๐‘‡ โˆˆ ๐น ๐‘‡ (๐‘…) its membership function is
๐‘Ÿ = 1, โ€ฆ , ๐‘ 
๐‘— =1
๐œ†๐‘— โ‰ฅ 0,
as follows:
0
๐‘ฅ โˆ’ ๐‘Ž1
๐‘Ž2 โˆ’ ๐‘Ž1
๐‘‡ ๐‘ฅ = 1
๐‘Ž4 โˆ’ ๐‘ฅ
๐‘Ž4 โˆ’ ๐‘Ž3
0
๐‘— = 1, โ€ฆ , ๐‘›
Unit DMU๐‘˜ is CCR efficient if the optimal
value of the objective function in model (2)
equals one (๐œƒ โˆ— = 1).
๐‘ฅ โ‰ค ๐‘Ž1
๐‘Ž1 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž2
๐‘Ž2 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž3
๐‘Ž3 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž4
๐‘Ž4 โ‰ค ๐‘ฅ
2.2 Fuzzy mechanism
Where a1 , a2 , a3 , a4 โˆˆ R
There are many de๏ฌnitions for fuzzy numbers.
fuzzy number ๐‘‡ is as:
We denote set of all fuzzy numbers by ๐น(๐‘…)
๐‘‡๐›ผ = ๐‘‡๐‘™ ๐›ผ , ๐‘‡๐‘Ÿ ๐›ผ
and de๏ฌne as follows.[9]
(6)
and ๐›ผ โˆ’level of
= [๐‘Ž1 + ๐‘Ž2 โˆ’ ๐‘Ž1 ๐›ผ , ๐‘Ž4
โˆ’ ๐‘Ž4 โˆ’ ๐‘Ž3 ๐›ผ]
(7)
Triangular fuzzy numbers are also special
De๏ฌnition 1. For fuzzy number ๐ด โˆˆ ๐น(๐‘…) , we
cases of trapezoidal fuzzy numbers with
show the membership function by ๐ด(๐‘ฅ) which
๐‘Ž2 = ๐‘Ž3 .
is given by
๐ด ๐‘ฅ =
0
๐‘™๐ด ๐‘ฅ
1
๐‘Ÿ๐ด ๐‘ฅ
0
๐‘ฅ โ‰ค ๐‘Ž1
๐‘Ž1 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž2
๐‘Ž2 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž3
๐‘Ž3 โ‰ค ๐‘ฅ โ‰ค ๐‘Ž4
๐‘Ž4 โ‰ค ๐‘ฅ
2.2.1 Inference mechanism
When we model a knowledge system, it is
(3)
often represented by the form of fuzzy rule
base. The fuzzy rule base consists of fuzzy ifthen rules. The rule base has the form of a
Where a1 , a2 , a3 , a4 โˆˆ R
decreasing and ๐‘Ÿ๐ด ๐‘ฅ
and ๐‘™๐ด ๐‘ฅ is non-
MIMO
is non-increasing and
๐‘™๐ด ๐‘Ž1 = 0, ๐‘™๐ด ๐‘Ž2 = 1, ๐‘Ÿ๐ด ๐‘Ž3 = 1
(multiple
input
multiple
output)
system.[10]
and
๐‘Ÿ๐ด ๐‘Ž4 = 0 . For any ๐›ผ โˆˆ 0,1 ; ๐›ผ โˆ’cut of
2.2.2 Mamdani inference mechanism
fuzzy numbe ๐ด is a crisp interval as
We assume that we have k fuzzy control rules
๐ด๐›ผ = ๐‘ฅ โˆˆ ๐‘…: ๐ด(๐‘ฅ) โ‰ฅ ๐›ผ = ๐ด๐‘™ ๐›ผ , ๐ด๐‘Ÿ ๐›ผ
(4)
of the form
If ๐ด, ๐ต โˆˆ ๐น(๐‘…) and ๐œ† โˆˆ ๐‘… then (A + B)ฮฑ =
๐‘…๐‘ข๐‘™๐‘’1 โˆถ ๐ผ๐‘“ ๐‘ฅ 1 ๐‘–๐‘› ๐ด11 ,· · · , ๐‘ฅ ๐‘š ๐‘–๐‘› ๐ด ๐‘š1 ๐‘‡โ„Ž๐‘’๐‘›
๐ด๐›ผ + Bฮฑ and A = B, if ๐ด๐‘™ ๐›ผ = ๐ต๐‘™ (๐›ผ) and
๐‘ฆ 1 ๐‘–๐‘› ๐ต11 ,· · · , ๐‘ฆ ๐‘  ๐‘–๐‘› ๐ต๐‘ 1
๐ด๐‘Ÿ ๐›ผ = ๐ต๐‘Ÿ ๐›ผ almost everywhere, ๐›ผ โˆˆ [0,1].
โ‹ฎ
(๐œ†๐ด)๐›ผ =
๐œ†๐ด๐‘™ ๐›ผ , ๐œ†๐ด๐‘Ÿ ๐›ผ
๐œ†๐ด๐‘™ ๐›ผ , ๐œ†๐ด๐‘Ÿ ๐›ผ
๐œ†โ‰ฅ0
๐œ†<0
๐‘…๐‘ข๐‘™๐‘’ ๐‘˜ โˆถ ๐ผ๐‘“ ๐‘ฅ 1 ๐‘–๐‘› ๐ด1๐‘˜ ,· · · , ๐‘ฅ ๐‘š ๐‘–๐‘› ๐ด ๐‘š๐‘˜ ๐‘‡โ„Ž๐‘’๐‘›
(5)
๐‘ฆ 1 ๐‘–๐‘› ๐ต1๐‘˜ ,· · · , ๐‘ฆ ๐‘  ๐‘–๐‘› ๐ต๐‘ ๐‘˜
๐‘“๐‘Ž๐‘๐‘ก โˆถ ๐ผ๐‘“ ๐‘ฅ 1 = ๐‘ฅ1 ,· · · , ๐‘ฅ๐‘š = ๐‘ฅ๐‘š
Trapezoidal fuzzy numbers are special cases of
๐‘๐‘œ๐‘›๐‘ ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘’ โˆถ ๐‘ฆ 1 ๐‘–๐‘› ๐ต1 ,· · · , ๐‘ฆ ๐‘  ๐‘–๐‘› ๐ต๐‘ 
fuzzy numbers which are denoted by ๐น ๐‘‡ (๐‘…)
959
(8)
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965
The ๏ฌring levels of the rules, denoted by
units. Without loss of generality argument
๐›ผ๐‘— : ๐‘— = 1, โ€ฆ , ๐‘˜ are computed by
suppose that ๐‘ฅ ๐‘–1 โ‰ค ๐‘ฅ ๐‘–2 โ‰ค . . . โ‰ค ๐‘ฅ ๐‘–๐‘˜ for ๐‘–โˆ’th
๐›ผ ๐‘— = ๐ด1๐‘— ๐‘ฅ1 โˆง โ€ฆ โˆง ๐ด๐‘š๐‘— ๐‘ฅ๐‘š ;
input and ๐‘ฆ ๐‘Ÿ1 โ‰ค ๐‘ฆ ๐‘Ÿ2 โ‰ค . . . โ‰ค ๐‘ฆ ๐‘Ÿ๐‘˜ for ๐‘Ÿโˆ’th
๐‘— = 1, โ€ฆ , ๐‘˜
9
output.
The individual rule outputs are obtained by
Now we partition the interval [๐‘ฅ๐‘–1 , ๐‘ฅ๐‘–๐‘˜ ] for
๐ถ๐‘Ÿ๐‘— ๐‘ค๐‘Ÿ = ๐ต๐‘Ÿ๐‘— ๐‘ค๐‘Ÿ โˆง ๐›ผ๐‘— ; ๐‘— = 1, โ€ฆ , ๐‘˜,
๐‘– = 1, . . . , ๐‘š with triangular fuzzy numbers
๐‘Ÿ = 1, โ€ฆ , ๐‘ 
10
are as follows:
๐‘ฅ๐‘–2 โˆ’ ๐‘ฅ
๐ด๐‘–1 ๐‘ฅ = ๐‘ฅ๐‘–2 โˆ’ ๐‘ฅ๐‘–1
0
๐ถ๐‘Ÿ ๐‘ค๐‘Ÿ = ๐ถ๐‘Ÿ1 ๐‘ค๐‘Ÿ โˆจ โ€ฆ โˆจ ๐ถ๐‘Ÿ๐‘˜ ๐‘ค๐‘Ÿ ;
๐‘Ÿ = 1, . . . , ๐‘ 
(11)
๐‘ฅ๐‘–1 โ‰ค ๐‘ฅ โ‰ค ๐‘ฅ๐‘–2
13
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
Finally, to obtain a deterministic control
๐ด๐‘–๐‘— ๐‘ฅ
action, we employ any defuzzi๏ฌcation strategy
๐‘ฅ โˆ’ ๐‘ฅ๐‘– ๐‘— โˆ’1
๐‘ฅ๐‘–๐‘— โˆ’ ๐‘ฅ๐‘– ๐‘— โˆ’1
๐‘ฅ๐‘– ๐‘— +1 โˆ’ ๐‘ฅ
=
๐‘ฅ๐‘– ๐‘— +1 โˆ’ ๐‘ฅ๐‘–๐‘—
0
[10].
2.2.3 Middle-of-Maxima defuzzi๏ฌcation
If ๐ถ is not discrete then defuzzi๏ฌed value of a
fuzzy set ๐ถ is de๏ฌned as [10]
๐‘0 =
๐บ
๐‘ง๐‘‘๐‘ง
=
where ๐บ denotes the set of maximizing
element of ๐ถ.
๐ท๐‘€๐‘ˆ๐‘  โˆถ ๐ท๐‘€๐‘ˆ1 , ๐ท๐‘€๐‘ˆ2 , โ€ฆ , ๐ท๐‘€๐‘ˆ๐‘› .
Let
and
also,
๐ต๐‘Ÿ1 ๐‘ฆ
๐‘ฆ๐‘Ÿ2 โˆ’ ๐‘ฆ
= ๐‘ฆ๐‘Ÿ2 โˆ’ ๐‘ฆ๐‘Ÿ1
0
the
input and output data for ๐ท๐‘€๐‘ˆ๐‘— be ๐‘‹ ๐‘— =
๐‘ฅ 1๐‘— , โ€ฆ , ๐‘ฅ ๐‘š๐‘—
๐‘Œ ๐‘— = ๐‘ฆ 1๐‘— , โ€ฆ , ๐‘ฆ๐‘ ๐‘— ,
respectively.
๐ต๐‘Ÿ๐‘— ๐‘ฆ
We want to create a new similar production
๐‘ฆ โˆ’ ๐‘ฆ๐‘Ÿ ๐‘— โˆ’1
๐‘ฆ๐‘Ÿ๐‘— โˆ’ ๐‘ฆ๐‘Ÿ ๐‘— โˆ’1
= ๐‘ฆ๐‘Ÿ ๐‘— +1 โˆ’ ๐‘ฆ
๐‘ฆ๐‘Ÿ ๐‘— +1 โˆ’ ๐‘ฆ๐‘Ÿ๐‘—
0
unit
with
the
speci๏ฌed
input
(14)
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
we
(15)
partition
the
๐‘Ÿ = 1, . . . , ๐‘  with
triangular fuzzy numbers are as follows:
๐‘›
are
; ๐‘— = 2, โ€ฆ , ๐‘˜ โˆ’ 1
๐‘— +1
๐‘ฅ๐‘–(๐‘˜โˆ’1) โ‰ค ๐‘ฅ โ‰ค ๐‘ฅ๐‘–๐‘˜
interval [๐‘ฆ๐‘Ÿ1 , ๐‘ฆ๐‘Ÿ๐‘˜ ] for
with fuzzy Inference mechanism
there
โ‰ค ๐‘ฅ โ‰ค ๐‘ฅ๐‘–๐‘—
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
๐‘ฅ โˆ’ ๐‘ฅ๐‘–(๐‘˜โˆ’1)
๐‘ฅ๐‘–๐‘˜ โˆ’ ๐‘ฅ๐‘–(๐‘˜โˆ’1)
0
And
3 Estimate output of a production units
Suppose
๐‘ฅ๐‘–๐‘— โ‰ค ๐‘ฅ โ‰ค ๐‘ฅ๐‘–
๐‘— โˆ’1
๐ด๐‘–๐‘— ๐‘ฅ
12
๐‘‘๐‘ง
๐บ
๐‘ฅ๐‘–
๐‘‹ =
(๐‘ฅ1 , . . . , ๐‘ฅ๐‘š ) were new input should be in the
convex hull of the units input observed. For
this purpose, ๏ฌrst we identify efficient units by
๐‘ฆ๐‘Ÿ1 โ‰ค ๐‘ฆ โ‰ค ๐‘ฆ๐‘Ÿ2
16
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
๐‘ฆ๐‘Ÿ
๐‘ฆ๐‘Ÿ๐‘— โ‰ค ๐‘ฆ โ‰ค ๐‘ฆ๐‘Ÿ
๐‘— โˆ’1
๐‘— +1
โ‰ค ๐‘ฆ โ‰ค ๐‘ฆ๐‘Ÿ๐‘—
; ๐‘— = 2, โ€ฆ , ๐‘˜ โˆ’ 1
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
17
๐ต๐‘Ÿ๐‘— ๐‘ฆ
existing methods such as ๐ถ๐ถ๐‘… or ๐ต๐ถ๐ถ, etc.
๐‘ฆ โˆ’ ๐‘ฆ๐‘Ÿ(๐‘˜โˆ’1)
= ๐‘ฆ๐‘Ÿ๐‘˜ โˆ’ ๐‘ฆ๐‘Ÿ(๐‘˜โˆ’1)
0
Let, ๐‘˜ ๐ท๐‘€๐‘ˆ๐‘  be effective. Then, we arranged
increasing order inputs and outputs of effecient
960
๐‘ฆ๐‘Ÿ(๐‘˜โˆ’1) โ‰ค ๐‘ฆ โ‰ค ๐‘ฆ๐‘Ÿ๐‘˜
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
(18)
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965
๐‘— = 1, . . . , ๐‘˜, ๐‘Ÿ = 1, . . . , ๐‘ 
We consider each efficient unit observed as a
๐‘— =
fuzzy control rules as follows for
๐ถ๐‘Ÿ ๐‘ค๐‘Ÿ = ๐ถ๐‘Ÿ1 ๐‘ค๐‘Ÿ โˆจ โ€ฆ โˆจ ๐ถ๐‘Ÿ๐‘˜ ๐‘ค๐‘Ÿ ;
1, . . . , ๐‘˜:
๐‘Ÿ = 1, . . . , ๐‘ 
๐‘…๐‘ข๐‘™๐‘’1 โˆถ ๐ผ๐‘“ ๐‘ฅ 1 ๐‘–๐‘› ๐ด11 ,· · · , ๐‘ฅ ๐‘š ๐‘–๐‘› ๐ด ๐‘š1 ๐‘‡โ„Ž๐‘’๐‘›
(22)
Finally, to obtain a deterministic control action
๐‘ฆ 1 ๐‘–๐‘› ๐ต11 ,· · · , ๐‘ฆ ๐‘  ๐‘–๐‘› ๐ต๐‘ 1
the outputs, we employ Middle-of-Maxima
defuzzi๏ฌcation method.
โ‹ฎ
๐‘…๐‘ข๐‘™๐‘’ ๐‘˜ โˆถ ๐ผ๐‘“ ๐‘ฅ 1 ๐‘–๐‘› ๐ด1๐‘˜ ,· · · , ๐‘ฅ ๐‘š ๐‘–๐‘› ๐ด ๐‘š๐‘˜ ๐‘‡โ„Ž๐‘’๐‘›
๐‘ฆ 1 ๐‘–๐‘› ๐ต1๐‘˜ ,· · · , ๐‘ฆ ๐‘  ๐‘–๐‘› ๐ต๐‘ ๐‘˜
(21)
if ๐‘ฅ 1 = ๐‘ฅ1๐‘ก ,· · · , ๐‘ฅ ๐‘š = ๐‘ฅ๐‘š๐‘ก ,
Now
for
๐‘ก = 1, . . . , ๐‘˜.
(19)
With Eq. (20)
Where ๐ด๐‘–๐‘— corresponding to ๐‘–โˆ’th input of ๐‘—โˆ’th
๐›ผ๐‘— =
unit. And also, ๐ต๐‘Ÿ๐‘— corresponding to ๐‘Ÿโˆ’th
1
0
๐‘—=๐‘ก
๐‘—โ‰ ๐‘ก
(23)
With Eq. (21) for ๐‘Ÿ = 1, . . . , ๐‘ 
output of ๐‘—โˆ’th unit.
๐ต๐‘Ÿ๐‘ก (๐‘ฆ๐‘Ÿ๐‘ก )
0
๐‘—=๐‘ก
๐‘—โ‰ ๐‘ก
Now suppose the input the new unit is as:
๐ถ๐‘Ÿ๐‘— (๐‘ค๐‘Ÿ ) =
๐‘ฅ 1 = ๐‘ฅ1,· · · , ๐‘ฅ ๐‘š = ๐‘ฅ๐‘š ,
And with Eq. (22) for ๐‘Ÿ = 1, . . . , ๐‘ 
we obtain with
(24)
Mamdanis max min method and Middle-of-
๐ถ๐‘Ÿ ๐‘ค๐‘Ÿ = ๐ถ๐‘Ÿ1 ๐‘ค๐‘Ÿ โˆจ โ€ฆ โˆจ ๐ถ๐‘Ÿ๐‘˜ ๐‘ค๐‘Ÿ = ๐ต๐‘Ÿ๐‘ก ๐‘ฆ๐‘Ÿ๐‘ก ;
Maxima defuzzi๏ฌcation method the outputs
๐‘Ÿ = 1, . . . , ๐‘ 
of ๐‘ฆ 1 = ๐‘ฆ1 ,· · · , ๐‘ฆ ๐‘  = ๐‘ฆ๐‘  .
Now, with Middle-of-Maxima defuzzi๏ฌcation
(25)
method ๐‘ฆ ๐‘Ÿ = ๐‘ฆ๐‘Ÿ๐‘ก for ๐‘Ÿ = 1, . . . , ๐‘š.
Proposition
1.
In
provided
inference
method, interpolation is maintains. In other
3.1 Examples
words, if input is: ๐‘ฅ 1 = ๐‘ฅ1๐‘ก ,· · · , ๐‘ฅ ๐‘š = ๐‘ฅ๐‘š๐‘ก ,
In this section, we consider 19 ๐ท๐‘€๐‘ˆ๐‘  with
then with Mamdanis max min method and
two inputs and two outputs.(Table 1). First,
Middle-of-Maxima defuzzi๏ฌcation method
we identify efficient units by CCR model
the outputs is as y1 = ๐‘ฆ1๐‘ก ,· · · , ๐‘ฆ ๐‘  = ๐‘ฆ๐‘ ๐‘ก for
where has come on table 2 (6 DMUs are
๐‘ก = 1, . . . , ๐‘˜.
efficient). To implement the example we use
MATLAB software. We partition the interval
Proof. With rules (19) and fuzzy partition of
[0, 216] (range of input 1) and [0, 203] (range
input interval and fuzzy partition of output
of input 2) with triangular fuzzy numbers
interval, Mamdanis max min method is as
regarding to Eqs (13)-(15) are as ๏ฌgures 1
following
and 2. And also, we partition the interval
๐›ผ ๐‘— = ๐ด1๐‘— ๐‘ฅ1 โˆง โ€ฆ โˆง ๐ด๐‘š๐‘— ๐‘ฅ๐‘š๐‘— ;
[0, 5368] (range of output 1) and [0, 639]
๐‘— = 1, . . . , ๐‘˜
(20)
(range of output 2) with triangular fuzzy
numbers regarding to Eqs (16) โˆ’ (18) are as
The individual rule outputs are obtained by
๐ถ๐‘Ÿ๐‘— ๐‘ค๐‘Ÿ = ๐ต๐‘Ÿ๐‘— ๐‘ค๐‘Ÿ โˆง ๐›ผ ๐‘— ;
๏ฌgures 3 and 4.
961
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965
Table 1. 19 DMUs with two inputs and two outputs.
DMU
input 1
input 2
output 1
output 21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
81
85
56.7
91
216
58
112.2
293.2
186.6
143.4
108.7
105.7
235
146.3
57
118.7
58
146
0
87.6
12.8
55.2
78.8
72
25.6
8.8
52
0
105.2
127
134.4
236.8
124
203
48.2
47.4
50.8
91.3
5191
3629
3302
3379
5368
1674
2350
6315
2865
7689
2165
3963
6643
4611
4869
3313
1853
4578
0
205
0
0
8
639
0
0
414
0
66
266
315
236
128
540
16
230
217
508
Table 2. DMUs are CCR e๏ฌƒcient.
DMU
input 1
input 2
output 1
output 21
1
2
5
9
15
19
81
85
216
186.6
57
0
87.6
12.8
72
0
203
91.3
5191
3629
5368
2865
4869
0
205
0
639
0
540
508
Figure 1: Partition of interval [0, 216] for input 1 with triangular fuzzy numbers.
962
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965
Figure 2: Partition of interval [0, 203] for input 2 with triangular fuzzy numbers.
Figure 3: Partition of interval [0, 5368] for output 1 with triangular fuzzy numbers.
Figure 4: Partition of interval [0, 639] for output 2 with triangular fuzzy numbers.
963
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016).957-965
We consider each efficient unit observed as a
For example, Approximation output to several
fuzzy control rule as ๏ฌgure 5 with partitions of
units with speci๏ฌc inputs is shown in Table 3.
inputs and outputs.
Figure 5: Fuzzy control rules
Table 3. Approximation output with known input.
Input 1
Input 2
Outnput 1
Outnput 2
๐’™๐Ÿ =90
๐’™๐Ÿ =20
๐‘ฆ1 โ‰ˆ 3.65๐‘’ + 003
๐‘ฆ2 โ‰ˆ 9.58
๐’™๐Ÿ =200
๐’™๐Ÿ =80
๐‘ฆ1 โ‰ˆ 5.34๐‘’ + 003
๐‘ฆ2 โ‰ˆ 613
๐’™๐Ÿ =118
๐’™๐Ÿ =42.8
๐‘ฆ1 โ‰ˆ 3.76๐‘’ + 003
๐‘ฆ2 โ‰ˆ 51.1
๐’™๐Ÿ =69
๐’™๐Ÿ =180
๐‘ฆ1 โ‰ˆ 4.62๐‘’ + 003
๐‘ฆ2 โ‰ˆ 559
Figure 6: Approximation outputs with ๐‘ฅ1 = 200 and ๐‘ฅ2 = 80.
964
M. Adabitabar firozja, et al /IJDEA Vol.4, No.2, (2016). 957-965
4 Conclusions
[5] R.D. Banker, Estimating most productive
In this paper, we consider the production
scale size using data envelopment analysis,
possibility set with n production units such
European Journal of Operational Research 17
that the following four principles that govern:
(1984)35-44.
inclusion
conceivability,
[6] Chang SL, Zadeh LA, On fuzzy mapping
immensity and convexity. We proposed a
and control. IEEE Trans Sys Man Cybernet
method for estimate the output of a same and
1972; 2:304.
new production unit with existing production
[7] A. Charnes, W.W. Cooper, E. Rhodes,
possibility and amount of input is speci๏ฌed.
Measuring e๏ฌƒciency of decision making units,
We in Proposition 1. Prove that in this
European Operational Research; (1978), 2,
inference method, interpolation is maintains.
429-444.
In the end, we present an example of
[8] W. W. Cooper, L. M. Sieford and K. Tone,
implementation.
Data envelopment analysis: a comprehensive
observations,
text with models, applications, References and
References
DEA Solver Software, Kluwer Academic
[1] S. Abbasbandy, M. Adabitabar Firozja,
Publishers, 2000.
Fuzzy linguistic model for interpolation,
[9]
Chaos, Solitons and Fractals 34 (2007) 551-
Grzegorzewski, M. Adabitabar Firozja, T.
556.
Houlari, Piecewise Linear Approximation of
[2] M. Adabitabar Firozja, G.H. Fath-Tabar, Z.
Fuzzy Numbers Preserving the Support and
Eslampia,
of
Core, In: Laurent A. et al. (Eds.), Information
generalized fuzzy numbers based on interval
Processing and Management of Uncertainty in
distance, Applied Mathematics Letters 25
Knowledge-Based Systems, Part II, (CCIS
(2012) 1528-1534.
443), Springer, 2014, pp. 244-254.
[3] T. Allahviranloo, F. Hosseinzadeh lot๏ฌ and
[10] R. Fullier, Neural Fuzzy Systems, ISBN
M. Adabitabar ๏ฌrozja, E๏ฌƒciency in fuzzy
951-650-624-0, ISSN 0358-5654.
production possibility set, Iranian Journal of
[11] S. Martin, B. Michal, S. Lenk, Fuzzy Rule
Fuzzy Systems Vol. 9, No. 4, (2012) pp. 17-
Base Ensemble Generated from Data by
30.
Linguistic Associations Mining, Fuzzy Sets
[4] R.D. Banker, A. Charnes, W.W. Cooper,
and System, Accepted date: 22 April 2015.
Some models for estimating technical and
[12] L.A. Zadeh, Fuzzy sets, Inform. Control
scale
8(1965)338-353.
The
ine๏ฌƒciency
similarity
in
data
measure
envelopment
analysis, Manage. Sci 30(1984), pp. 10781092.
965
L.
Coroianu,
M.
Gagolewski,
P.