Logic: Truth Tables, DeMorgan’s Laws Contemporary Math Josh Engwer TTU 20 July 2015 Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 1 / 59 Truth Tables for the AND, OR, NOT Connectives P Q T T T F F T F F Truth Table for Conjunction (AND): Truth Table for Disjunction (OR): Truth Table for Negation (NOT): P Q T T T F F T F F P T F P∧Q T F F F P∨Q T T T F ∼P F T (Truth tables for the Conditional & Biconditional are seen in next section.) Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 2 / 59 Inclusive OR (∨) versus Exclusive OR (XOR) Disjunction is implicitly inclusive OR. P T The truth table for inclusive OR: T F F Q T F T F P T The truth table for exclusive OR, is: T F F P∨Q T T T F Q T F T F P XOR Q F T T F The difference in their truth tables is in blue. Examples in English: Inclusive OR: ”The car is compact or red” (or both compact and red) Exclusive OR: ”I (either) drove to Austin or drove to Dallas” (but not both) Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 3 / 59 Logic Connectives (Order of Operations) It’s important to know the ”order of operations” of logic connectives. Otherwise, statements would require too many parentheses & brackets. DOMINANCE: MOST DOMINANT 2nd DOMINANT CONNECTIVES: Biconditional ←→ Conditional −→ Conjunction ∧ rd 3 DOMINANT Disjunction ∨ LEAST DOMINANT Negation ∼ REMARK: Since conjunction & disjunction has equal dominance, statements involving several of them require parentheses & square brackets! For example: P ∧ Q ∨ R is ambiguous! It needs to change to one of the following: ? (P ∧ Q) ∨ R ? P ∧ (Q ∨ R) ? WARNING: The above two statements have different truth tables! (∼ P ∨ ∼ Q) ∧ ∼ R is equivalent to [(∼ P) ∨ (∼ Q)] ∧ (∼ R) (Q ∧ ∼ P) −→ ∼ R is equivalent to [(Q ∧ (∼ P))] −→ (∼ R) Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 4 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 5 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q Josh Engwer (TTU) ∼Q P∧∼Q ∼ (P ∧ ∼ Q) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 6 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T F F Josh Engwer (TTU) ∼Q P∧∼Q ∼ (P ∧ ∼ Q) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 7 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F Josh Engwer (TTU) ∼Q P∧∼Q ∼ (P ∧ ∼ Q) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 8 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F Josh Engwer (TTU) ∼Q P∧∼Q F T F T ∼ (P ∧ ∼ Q) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 9 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F Josh Engwer (TTU) ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 10 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F Josh Engwer (TTU) ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) T F T T Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 11 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F Josh Engwer (TTU) ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) T F T T Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 12 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) T F T T While not required, let’s do a quick a posteriori analysis of the truth table: If P is true and Q is true, then ∼ (P ∧ ∼ Q) is true. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 13 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) T F T T While not required, let’s do a quick a posteriori analysis of the truth table: If P is true and Q is false, then ∼ (P ∧ ∼ Q) is false. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 14 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) T F T T While not required, let’s do a quick a posteriori analysis of the truth table: If P is false and Q is true, then ∼ (P ∧ ∼ Q) is true. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 15 / 59 Truth Tables (Example) WEX 3-2-1: Construct a truth table for the logic statement: ∼ (P ∧ ∼ Q) P Q T T T F F T F F ∼Q P∧∼Q F F T T F F T F ∼ (P ∧ ∼ Q) T F T T While not required, let’s do a quick a posteriori analysis of the truth table: If P is false and Q is false, then ∼ (P ∧ ∼ Q) is true. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 16 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 17 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q Josh Engwer (TTU) R (P ∧ Q) ∼ R (P ∧ Q) ∧ ∼ R Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 18 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T F F F F Josh Engwer (TTU) R (P ∧ Q) ∼ R (P ∧ Q) ∧ ∼ R Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 19 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F Josh Engwer (TTU) R (P ∧ Q) ∼ R (P ∧ Q) ∧ ∼ R Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 20 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F Josh Engwer (TTU) R T F T F T F T F (P ∧ Q) ∼ R (P ∧ Q) ∧ ∼ R Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 21 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F Josh Engwer (TTU) R T F T F T F T F (P ∧ Q) ∼ R T T F F F F F F (P ∧ Q) ∧ ∼ R Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 22 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F Josh Engwer (TTU) R T F T F T F T F (P ∧ Q) ∼ R T F T T F F F T F F F T F F F T (P ∧ Q) ∧ ∼ R Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 23 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F Josh Engwer (TTU) R T F T F T F T F (P ∧ Q) ∼ R T F T T F F F T F F F T F F F T (P ∧ Q) ∧ ∼ R F T F F F F F F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 24 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F Josh Engwer (TTU) R T F T F T F T F (P ∧ Q) ∼ R T F T T F F F T F F F T F F F T (P ∧ Q) ∧ ∼ R F T F F F F F F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 25 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F R T F T F T F T F (P ∧ Q) ∼ R T F T T F F F T F F F T F F F T (P ∧ Q) ∧ ∼ R F T F F F F F F While not required, let’s do a quick a posteriori analysis of the truth table: If P is true, Q is true, and R is true, then (P ∧ Q) ∧ ∼ R is false. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 26 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F R T F T F T F T F (P ∧ Q) ∼ R T F T T F F F T F F F T F F F T (P ∧ Q) ∧ ∼ R F T F F F F F F While not required, let’s do a quick a posteriori analysis of the truth table: If P is true, Q is true, and R is false, then (P ∧ Q) ∧ ∼ R is true. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 27 / 59 Truth Tables (Example) WEX 3-2-2: Construct a truth table for the logic statement: (P ∧ Q) ∧ ∼ R P Q T T T T T F T F F T F T F F F F R T F T F T F T F (P ∧ Q) ∼ R T F T T F F F T F F F T F F F T (P ∧ Q) ∧ ∼ R F T F F F F F F While not required, let’s do a quick a posteriori analysis of the truth table: If P is false, Q is true, and R is false, then (P ∧ Q) ∧ ∼ R is false. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 28 / 59 Logical Equivalence (Definition) Definition (Logical Equivalence) Two logic statements are logically equivalent, if they have the same variables (e.g. P, Q, R, . . . ) and the final columns in their truth tables are identical. NOTATION: The symbol ⇐⇒ means ”is logically equivalent to” Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 29 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 30 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P Josh Engwer (TTU) Q R ∼R Q∨∼R P ∧ (Q ∨ ∼ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 31 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Josh Engwer (TTU) Q R ∼R Q∨∼R P ∧ (Q ∨ ∼ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 32 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Josh Engwer (TTU) Q T T F F T T F F R ∼R Q∨∼R P ∧ (Q ∨ ∼ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 33 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Josh Engwer (TTU) Q T T F F T T F F R T F T F T F T F ∼R Q∨∼R P ∧ (Q ∨ ∼ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 34 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Josh Engwer (TTU) Q T T F F T T F F R T F T F T F T F ∼R F T F T F T F T Q∨∼R P ∧ (Q ∨ ∼ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 35 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Josh Engwer (TTU) Q T T F F T T F F R T F T F T F T F ∼R F T F T F T F T Q∨∼R T T F T T T F T P ∧ (Q ∨ ∼ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 36 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Josh Engwer (TTU) Q T T F F T T F F R T F T F T F T F ∼R F T F T F T F T Q∨∼R T T F T T T F T P ∧ (Q ∨ ∼ R) T T F T F F F F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 37 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P Q Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 38 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Q T T F F T T F F Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) T F T F T F T F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 39 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Q T T F F T T F F Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) T F F F T T F T T F F F T T F T Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 40 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Q T T F F T T F F Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) T F F F F F T T T F T F T F F F F F T T T F T F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 41 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Q T T F F T T F F Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) T F F T F F F T T T T F F T F T T F F T F F F T T T T F F T F T Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 42 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Q T T F F T T F F Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) T F F T T F F F T T T T T F F F T F T T T F F T F F F F T F T T T F F F T F T F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 43 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P T T T T F F F F Q T T F F T T F F Josh Engwer (TTU) P Q R ∼ R Q ∨ ∼ R P ∧ (Q ∨ ∼ R) T T T F T T T T T T T F T F T F F F T T T T F F F T T F T F F T F T T F F F T F F F F F F T T F R ∼ Q ∼ Q ∧ R ∼ (∼ Q ∧ R) P ∧ ∼ (∼ Q ∧ R) T F F T T F F F T T T T T F F F T F T T T F F T F F F F T F T T T F F F T F T F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 44 / 59 Logical Equivalence (Example) WEX 3-2-3: Determine whether P ∧ (Q ∨ ∼ R) ⇐⇒ P ∧ ∼ (∼ Q ∧ R) or not. P Q T T T T T F T F F T F T F F F F R T F T F T F T F ∼R F T F T F T F T Q∨∼R T T F T T T F T P ∧ (Q ∨ ∼ R) T T F T F F F F P ∧ ∼ (∼ Q ∧ R) T T F T F F F F Since the corresponding entries (in blue) of P ∧ (Q ∨ ∼ R) and P ∧ ∼ (∼ Q ∧ R) all match, P ∧ (Q ∨ ∼ R) and P ∧ ∼ (∼ Q ∧ R) are logically equivalent. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 45 / 59 Simplifying Logic Statements (DeMorgan’s Laws) Theorem (DeMorgan’s Laws) (a) ∼ (∼ P) ⇐⇒ P (b) ∼ (P ∧ Q) ⇐⇒ (∼ P) ∨ (∼ Q) (c) ∼ (P ∨ Q) ⇐⇒ (∼ P) ∧ (∼ Q) Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 46 / 59 Simplifying Logic Statements (DeMorgan’s Laws) Theorem (DeMorgan’s Laws) (a) ∼ (∼ P) ⇐⇒ P (b) ∼ (P ∧ Q) ⇐⇒ (∼ P) ∨ (∼ Q) (c) ∼ (P ∨ Q) ⇐⇒ (∼ P) ∧ (∼ Q) PROOF: (a) Josh Engwer (TTU) P T F ∼P F T ∼ (∼ P) T F Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 47 / 59 Simplifying Logic Statements (DeMorgan’s Laws) Theorem (DeMorgan’s Laws) (a) ∼ (∼ P) ⇐⇒ P (b) ∼ (P ∧ Q) ⇐⇒ (∼ P) ∨ (∼ Q) (c) ∼ (P ∨ Q) ⇐⇒ (∼ P) ∧ (∼ Q) PROOF: (b) P T T F F Josh Engwer (TTU) Q T F T F P∧Q T F F F ∼ (P ∧ Q) F T T T ∼P F F T T ∼Q F T F T Logic: Truth Tables, DeMorgan’s Laws (∼ P) ∨ (∼ Q) F T T T 20 July 2015 48 / 59 Simplifying Logic Statements (DeMorgan’s Laws) Theorem (DeMorgan’s Laws) (a) ∼ (∼ P) ⇐⇒ P (b) ∼ (P ∧ Q) ⇐⇒ (∼ P) ∨ (∼ Q) (c) ∼ (P ∨ Q) ⇐⇒ (∼ P) ∧ (∼ Q) PROOF: (c) P T T F F Josh Engwer (TTU) Q T F T F P∨Q T T T F ∼ (P ∨ Q) F F F T ∼P F F T T ∼Q F T F T Logic: Truth Tables, DeMorgan’s Laws (∼ P) ∧ (∼ Q) F F F T 20 July 2015 49 / 59 Simplifying Logic Statements (Example) WEX 3-2-4: Via DeMorgan’s Laws, completely simplify: ∼ [P ∨ (∼ Q ∧ ∼ R)] Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 50 / 59 Simplifying Logic Statements (Example) WEX 3-2-4: Via DeMorgan’s Laws, completely simplify: ∼ [P ∨ (∼ Q ∧ ∼ R)] ∼ [P ∨ (∼ Q ∧ ∼ R)] Josh Engwer (TTU) ⇐⇒ (∼ P) ∧ ∼ (∼ Q ∧ ∼ R) Logic: Truth Tables, DeMorgan’s Laws [DeMorgan (c)] 20 July 2015 51 / 59 Simplifying Logic Statements (Example) WEX 3-2-4: Via DeMorgan’s Laws, completely simplify: ∼ [P ∨ (∼ Q ∧ ∼ R)] ∼ [P ∨ (∼ Q ∧ ∼ R)] Josh Engwer (TTU) ⇐⇒ ⇐⇒ (∼ P) ∧ ∼ (∼ Q ∧ ∼ R) [DeMorgan (c)] (∼ P) ∧ ∼ (∼ Q) ∨ ∼ (∼ R) [DeMorgan (b)] Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 52 / 59 Simplifying Logic Statements (Example) WEX 3-2-4: Via DeMorgan’s Laws, completely simplify: ∼ [P ∨ (∼ Q ∧ ∼ R)] ∼ [P ∨ (∼ Q ∧ ∼ R)] Josh Engwer (TTU) ⇐⇒ ⇐⇒ ⇐⇒ (∼ P) ∧ ∼ (∼ Q ∧ ∼ R) [DeMorgan (c)] (∼ P) ∧ ∼ (∼ Q) ∨ ∼ (∼ R) [DeMorgan (b)] (∼ P) ∧ Q ∨ R [DeMorgan (a)] Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 53 / 59 Negating English Statements (Example) WEX 3-2-5: Via DeMorgan’s Laws, negate the English statement: ”Flowers are not red or John’s truck has anti-lock brakes.” Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 54 / 59 Negating English Statements (Example) WEX 3-2-5: Via DeMorgan’s Laws, negate the English statement: ”Flowers are not red or John’s truck has anti-lock brakes.” Let P ≡ ”Flowers are not red”, Josh Engwer (TTU) Q ≡ ”John’s truck has anti-lock brakes.” Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 55 / 59 Negating English Statements (Example) WEX 3-2-5: Via DeMorgan’s Laws, negate the English statement: ”Flowers are not red or John’s truck has anti-lock brakes.” Let P ≡ ”Flowers are not red”, Q ≡ ”John’s truck has anti-lock brakes.” Then, ”Flowers are not red or John’s truck has anti-lock brakes.” ≡ P ∨ Q Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 56 / 59 Negating English Statements (Example) WEX 3-2-5: Via DeMorgan’s Laws, negate the English statement: ”Flowers are not red or John’s truck has anti-lock brakes.” Let P ≡ ”Flowers are not red”, Q ≡ ”John’s truck has anti-lock brakes.” Then, ”Flowers are not red or John’s truck has anti-lock brakes.” ≡ P ∨ Q Negation: ∼ (P ∨ Q) ⇐⇒ (∼ P) ∧ (∼ Q) Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 57 / 59 Negating English Statements (Example) WEX 3-2-5: Via DeMorgan’s Laws, negate the English statement: ”Flowers are not red or John’s truck has anti-lock brakes.” Let P ≡ ”Flowers are not red”, Q ≡ ”John’s truck has anti-lock brakes.” Then, ”Flowers are not red or John’s truck has anti-lock brakes.” ≡ P ∨ Q Negation: ∼ (P ∨ Q) ⇐⇒ (∼ P) ∧ (∼ Q) ⇐⇒ ”Flowers are red and John’s truck does not have anti-lock brakes.” Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 58 / 59 Fin Fin. Josh Engwer (TTU) Logic: Truth Tables, DeMorgan’s Laws 20 July 2015 59 / 59
© Copyright 2026 Paperzz