1 Chapter 6: Polynomial Transformation Notes Packet Name: ___________________________________________ Pd: _______ Lesson Book Topic Ch. 1 2 6-1 7-8 3 4 7-8 5 8-1 6 8-3 Homework/Practice: Date due: Polynomial Vocabulary Graphing Radical (Square root) Functions p. 4 p.6-7 Graphing Cubic Functions Graphing Radical (cube root) functions Graphing Exponential Models p.9-10 p.12-13 Graphing Logarithmic Functions (as inverses) Test Review p.17-18 p.16 p.19-21 Grade: 2 6-1 Polynomial Functions: Key Vocabulary I. Polynomial Function – single term or sum of terms P x an xn an1xn1 ... a1x a0 , where an ,..., a0 are coefficients and n is a nonnegative integer Examples: P ( x ) 8 x5 6 x 4 2 x 2 x 9 F ( x ) 6 a3 2 a 2 7 a 8 II. Domain – all the _________ the function uses Range – all the _________ the function uses III. X-intercepts or Roots or Zeros or Solutions: where the graph________________________ a. These can be found by ______________ , graphing on a calculator, or using the quadratic formula. IV. Y-Intercepts – where the graph crosses/touches the ____________ a. These can be found by setting x equal to 0. End Behavior – the direction in which the ends of the graph are pointing/moving V. VI. Classifying Intervals – Increasing Interval – as x increases f(x) increases (section of graph that is slanting________ from left to right) Decreasing Interval – as x increases f(x) decreases (section of graph that is slanting ______ from left to right) Remember: you only use x-values when describing intervals. VII. Turning Point – point where the graph changes from increasing to decreasing or viseversa To determine how many turning points a polynomial can have you take the degree of the polynomial and subtract one. VIII. Degree of a Polynomial – Algebraically The highest exponent Graphically Even Degree: ends of graph point in ____________________ Odd Degree = ends of graph point in __________________ IX. Functions – Even Functions – graph is symmetric about the y- axis (if you fold graph along the yaxis the left & right side will be mirror images) Odd Functions – graph is symmetric about the origin (if you rotate the graph graph will look exactly the same) 180 , Note: Functions do not have to be either Even Functions or Odd Functions; they can be neither functions. 3 1. EXAMPLE: Find the x- and y-intercepts of each polynomial function. 2 y x 2. y x 2 2 x 3 3. y 10 x3 15 x 2 2 x 3 3 4. Type of Function: y Degree: 5 4 End Behavior: 3 2 1 –5 –4 –3 –2 –1 –1 1 2 3 4 5 Increasing Interval: Decreasing Interval: Domain: Range: x-intercept: y-intercept: Type of Function: Degree: x –2 –3 –4 –5 5. y 5 End Behavior: 4 3 2 1 –5 –4 –3 –2 –1 –1 1 2 3 4 5 x Increasing Interval: Decreasing Interval: Domain: Range: x-intercept: y-intercept: –2 –3 –4 –5 6. y Type of Function: 7 6 Degree: 5 End Behavior: 4 3 2 1 –5 –4 –3 –2 –1 –1 –2 –3 1 2 3 4 Increasing Interval: Decreasing Interval: Domain: Range: x-intercept: y-intercept: 5 x –4 –5 4 Classwork: Section 6-1 5 Lesson 2: Graphing the Square Root Function: f(x) = Recall how to graph Quadratic Functions (Parabolas): 1. Plot your vertex 2 2. over A up Ex: f(x) = x To Graph Square Roots: 1. Plot your vertex 2. over A up x (parent function) Range: __________ 1. f ( x) x 6 D:______ R: ______ Domain: ________ 2. f ( x) x 6 D:______ R:______ y y –6 –4 9 9 4 6 6 2 3 3 –2 2 4 x 6 –9 –6 –3 3 x 9 –9 –6 –3 3 –3 –3 –4 –6 –6 –6 –9 –9 y y 9 9 9 6 6 6 3 3 3 –3 3 6 9 x –9 –6 –3 x 9 1 x6 2 D:_____ R:_____ D:_____ R:______ y 6 5. f ( x) 4. f ( x) 2 x 7 D:_____ R:______ –6 6 –2 3. f ( x) x –9 y 6 3 6 9 x –9 –6 –3 3 –3 –3 –3 –6 –6 –6 –9 –9 –9 CONCLUSIONS: A. What happens when values are added or subtracted ‘inside’ and ‘outside’ the parent function? B. What happens if a negative is placed in front of the equation? C. What happens when a value is multiplied outside of the function? D. How is the graph of y x 2 4 transformed from the parent graph of y x ? 6 9 x 6 The Square Root Function Practice: Lesson #2 1. What is the parent equation for the Square Root Function? _____________ 2. Graph the parent function for Square Root. 3. Domain: ______ Range: ______ 4. x-intercept: ________ 5. y-intercept: ________ 6. What are the coordinates for the 3 major points: _______, ________, _______ 7. Based on your knowledge of transformations, describe the roles a, h, and k play for the family of functions y a x h k . (i.e what does a do, what does h do, what does k do, and so on……) a:___________________________________________________ h: __________________________________________________ k:__________________________________________________ 8. How would each of the following graphs change in relation to the parent graph? a) y x 3 _______________________________________ b) y x 4 ________________________________________ c) y 3 x _________________________________________ d) y x 5 _________________________________________ e) y 3 x 2 7 ______________________________________ 9. Without graphing, state the Domain and Range of each function. a) y 5 x Domain _________ Range _________ b) y x 8 _________ _________ c) y x 7 _________ _________ d) y x 2 3 _________ _________ e) y x 4 1 _________ _________ 7 10. Graph the following square root functions using transformations. a) y x b) y 3 x 5 c) y x 2 Domain: ________ Range:_________ Domain:________ Range:__________ Domain: _______ Range: ________ d) y x 3 e) y x 2 5 f) y x 3 3 Domain: ________ Range: _______ Domain: ________ Range: ________ Range: _______ 8 Lesson #3: Graphing Cubics x3 Cubic Function: f(x) = To Graph Cubics: 1. Plot your vertex 3 2. over A up Ex: f(x) = x 3 (parent function) Domain: _____ Range: ______ 1. f ( x) x3 4 D:_____ R:______ y –9 3. –6 9 9 6 6 3 3 –3 3 6 x 9 –9 –6 6 3 3 –3 –6 –6 –9 –9 6 9 –9 x –6 –3 3 –9 1 3 x 2 D:_____ R:_____ 5. f ( x) y y 9 9 9 6 6 6 3 3 3 3 6 x 9 –9 –6 –3 3 6 9 x –9 –6 –3 3 –3 –3 –3 –6 –6 –6 –9 –9 –9 1 3 x 3 5 7. f ( x ) 5( x 4)3 D:_____ R:_____ x 9 –6 D:_____ R:______ –3 6 –3 4. f ( x) 2 x3 y 6. f ( x ) 9 –3 –3 D:_____ R:_____ –6 y y f ( x) x 3 –9 2. f ( x) ( x 4)3 D:______ R:______ 6 9 x 8. f ( x) ( x 1)3 5 D:_____ R: _____ D:_____ R:______ y y y 9 9 9 6 6 6 3 3 3 –9 –6 –3 3 –3 6 9 x –9 –9 –6 –3 3 6 9 x –6 –3 3 –3 –3 –6 –6 –6 –9 –9 –9 6 9 x 9 CONCLUSIONS: A. What happens when values are added or subtracted ‘inside’ and ‘outside’ the parent function? B. What happens if a negative is placed in front of the equation? C. What happens when a value is multiplied outside of the function? D. What happens when a value is multiplied outside of the function? E. How is the graph of y ( x 1)3 5 transformed from the parent graph of y x3 ? Practice: Cubics Lesson #3 1. What is the parent equation for the Cube Function? _____________ 2. Graph the parent function for Cube. 3. Domain: ______ Range: ______ 4. x-intercept: _______ y-intercept: _____ 5. How would each of the following graphs change in relation to the parent graph? a) y ( x 3)3 _____________________________________________ b) y ( x 4)3 _____________________________________________ c) y 3( x)3 _____________________________________________ d) y x3 5 _____________________________________________ e) y x3 6 ____________________________________________ 10 9. Graph the following Cube functions using transformations. a) y x3 b) y 3x3 5 Domain: ________ Range:_________ Domain: ________ Range:__________ Domain: ________ Range: _______ Domain: ________ Range: ________ d) y ( x 3)3 e) y ( x 2)3 5 c) y x3 2 Domain: _______ Range: ________ f) y ( x 3)3 3 Domain:________ Range: _______ 11 Lesson #4: Cube Root Families of graphsCube Root Function model: y a3 x h k To Graph Cube Roots: 1. Plot your vertex 2. 3 over A up Ex: f(x) = 3 x (parent function) Range: __________ 1. f ( x) 3 x 6 Domain: ________ 2. f ( x) 3 x 6 D: ______ R:______ y –9 –6 D: _______ R:_______ y y 9 9 9 6 6 6 3 3 3 –3 3 6 x 9 –9 –6 –3 3 6 9 x –9 –6 –3 3 –3 –3 –3 –6 –6 –6 –9 –9 –9 3. f ( x) 3 x 1 f ( x) 3 x 6 2 2 4. f ( x) 2 3 x 7 5. D: _______ R:_______ D: ______ R: ______ D:______ R: ______ y 6 y y 9 9 6 6 3 3 9 6 3 –9 –6 –3 3 6 9 –3 –6 –9 CONCLUSIONS: use the model x –9 –6 –3 3 6 9 x –9 –6 –3 3 –3 –3 –6 –6 –9 –9 y a 3 x h k to answer each question: A. What happens when values are added or subtracted ‘inside’ and ‘outside’ the parent function? B. What happens if a negative is placed in front of the equation? C. What happens when a value is multiplied outside of the function? D. How is the graph of y 3 x 2 4 transformed from the parent graph of y 3 x ? 6 9 x 9 x 12 Practice Lesson #4: The Cube Root Function 1. What is the parent equation for the Cube Root Function? _____________ 2. Graph the parent function for Cube Root. 3. Domain: ______ Range: ______ 4. x-intercept: ________ y-intercept: ________ 5. What are the coordinates for the 3 major points: _______, ________, _______ 6. Based on your knowledge of transformations, describe the roles a, h, and k play for the family of functions y a 3 x h k . (i.e what does a do, what does h do, what does k do, and so on……) a: _________________________________________________ h: _________________________________________________ k:__ ________________________________________________ 7. How would each of the following graphs change in relation to the parent graph? f) y 3 x 3 _____________________________________________ g) y 3 x 4 _____________________________________________ h) y 3 3 x _____________________________________________ i) y 3 x 5 _____________________________________________ j) y 3 x 6 _____________________________________________ k) y 3 3 x 2 7 _____________________________________________ 13 9. Graph the following cube root functions using transformations. a) y 3 x b) y 3 3 x 5 Domain: ________ Range:_________ Domain: ________ Range:__________ d) y 3 x 3 e) y 3 x 2 5 Domain: ________ Range: _______ Domain: ________ Range: ________ c) y 3 x 2 Domain: _______ Range: ________ f) y 3 x 3 3 Domain:________ Range: _______ 14 Lesson #5: Exponential Functions Introduction: Exponential Functions Example – The temperature of a can of soda is 60◦C. It is placed in the refrigerator, which reduces the temperature by 20% every hour. The following graph, 𝑦 = 60(0.8)𝑥 , models the temperature of the soda can. 1. What does 60 represent in the equation? 2. What does 0.8 represent in the equation? 3. Will the temperature ever reach 0◦C? 4. State the domain and range for this graph. 5. When will the soda be ready to drink? Definition of the Exponential Function The example above is an exponential function. It is defined by 𝑓(𝑥) = 𝑏 𝑥 , where b is a positive constant other than one and x is any real number. Other examples of exponential functions are: 𝑓(𝑥) = 2𝑥 General form: ℎ(𝑥) = 10𝑥 𝑔(𝑥) = 3𝑥+2 f ( x) ab x h k . What is an asymptote? _____________________ What is the asymptote for the general graph of y bx 1 𝑥−4 𝑦 = (2) 15 Exploration: Transformations of Functions Objective: To discover how to shift the graph of the exponential function horizontally or vertically, or to stretch the graph, or to reflect the graph about the x- or y- axis. Directions: 1. Create a new Word document and save it as YourLastNamePeriod#FT.docx 2. Open up the Graph Program: Start – All Programs – HCPS Software – Graph 3. Graph a new function by going to Function, Insert Function. Type in the equation in the top line. HINT: 𝑓(𝑥) = 2𝑥 is f(x) = 2^x 𝑔(𝑥) = 3𝑥+2 is g(x) = 3^(x+2) 4. Graph more than one function on a graph. Change the color of each function under “Graph Properties” at the bottom of the Insert Function menu. 5. Copy the graph into your Word Document by selecting Edit, Copy Image in the Graph Program, then selecting Paste or Ctrl-V in the Word Document. You will have to shrink the graph down. 6. Graph the following functions and paste them into your word document. Graph 1 f ( x) 2 x f ( x) 2 x 3 7. Write 5 complete sentences, one for each graph, that describes how changing the equation affects the graph. f ( x) 2 x 1 f ( x) 2 x 5 f ( x) 2 4 x Graph 2 f ( x) 2 x f ( x ) 2( x 2) f ( x ) 2( x 3) f ( x ) 2( x 5) f ( x ) 2( x 6) Graph 3 f ( x) 2 x f ( x ) 2( x ) Graph 4 f ( x) 2 x f ( x ) 2 x Graph 5 f ( x) 2 x f ( x ) 0.5 2 x f ( x) 2 2 x f ( x ) 0.25 2 x f ( x ) 3 2 x Example: “Graph 1: Adding a number to the outside of the function causes the graph to ___________.” Be specific and include details – e.g. does it matter if the number is positive or negative? A whole number or decimal? 8. Save your work and drop it in my Virtual Share folder: RALAWREN. This is worth a classwork grade. 16 Lesson #5 Practice Use the graphing calculator’s Table feature (or do a t-table by hand) to graph points for each function below. Show horizontal asymptotes with a dotted line. 1. f ( x) 2 x 3 2. f ( x) 2 x 3 3. f ( x) 2 x 1 3 Domain: Domain: Domain: Range: Range: Range: Asymptote: Asymptote: Asymptote: 4. f ( x) 3 x 2 1 5. f ( x) 3x 1 2 6. f ( x) 3 x Domain: Domain: Domain: Range: Range: Range: Asymptote: Asymptote: Asymptote: 17 Lesson #6: Graphing Log Functions Logarithmic Functions are inverses of exponential functions. An example of this is the Richter scale that measures the intensity of earthquakes. For each increase in one unit on this scale, there is a tenfold increase in the intensity of the earthquake. For example, the Chilean earthquake in 2010 measured 8.8 and the Japanese earthquake in 2011 measured 9.0 on the Richter scale. The Japanese earthquake was 100.2 or 1.58 times more intense than the Chilean earthquake. Parent function: 9 8 7 6 5 4 3 2 1 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 -1 -2 -3 -4 2 3 4 5 6 7 8 9 Work with graphing calculator to do the following tasks: 1. Graph parent function: y = log(x). 2. What is the asymptote? ______________ 3. What is the Domain? _____________ 4. What is the Range ? _____________ 5. What are 2 points on this graph? ___________, _________ -5 -6 -7 -8 -9 Graph the parent and each of the following functions on your calculator. Describe the changes. Part A: 1. y = log(x) + 3 ________________________________________________________ 2. y = log(x) - 5 ________________________________________________________ What can you say about values added/subtracted outside of the function? ______________________________________________________________________________________ Has the asymptote changed? ________________________________ Part B: 3. y = log(x + 2) ____________________________________________________________ 4. y = log(x – 8) ____________________________________________________________ What can you say about values added/subtracted inside the function? _________________________________________________________________________________________ Has the asymptote changed? If so, how? _______________________________________________________ Part C: Now describe the changes if Part A and B are put together. Also, list the asymptote equations. 5. y = log(x + 2) - 5 ____________________________________________________________ 6. y = log(x – 3) + 7 ____________________________________________________________ Part D: Now put in these functions and describe the changes 7. y = 5 log(x) ____________________________________________________________ 18 8. y = 1/3 log(x) ____________________________________________________________ 9. y = - log(x) ____________________________________________________________ What can you say about values multiplied outside the function? What about the asymptote? _______________________________________________________________________________________ Part E: Describe the changes that will take place from the parent graph. List any asymptotes. 10. y = 5 log(x) + 3 ____________________________________________________________ 11. y = -2 log(x-4) ________________________________________________________________ 19 Unit 9 Test Review – Transformations and Graphs of Functions Graph the following functions and answer the questions below. 1. y ( x 2 2 Name of graph: ___________ Parent graph: ____________ Domain: ________________ Range: _________________ Asymptote: _______________ Pivot Point: _______________ 4. f ( x) 2( x 1) 3 3 Name of graph: ___________ Parent graph: ____________ Domain: ________________ Range: _________________ Asymptote: _______________ Pivot Point: _______________ 2. y 3 x 4 1 3. y ( x 2)3 3 Name if graph: ____________ Parent graph: _____________ Domain: _________________ Range: __________________ Asymptote: _______________ Pivot Point: ________________ Name of graph: _________ Parent graph: ___________ Domain: ________________ Range: _______________ Asymptote: ____________ Pivot Point: _____________ 5. y 13 x 2 Name if graph: ____________ Parent graph: _____________ Domain: _________________ Range: __________________ Asymptote: _______________ Pivot Point: ________________ 6. f ( x) 2 3 x 1 3 Name of graph: _________ Parent graph: ___________ Domain: ________________ Range: _______________ Asymptote: ____________ Pivot Point: _____________ 20 7. y 3x 2 1 8. y log x Name of graph: ___________ Parent graph: ____________ Domain: ________________ Range: _________________ Asymptote: _______________ Pivot Point: _______________ Name if graph: ____________ Parent graph: _____________ Domain: _________________ Range: __________________ Asymptote: _______________ Pivot Point: ________________ 10. f ( x) 4x 2 11. y 2 x 4 Name of graph: ___________ Parent graph: ____________ Domain: ________________ Range: _________________ Asymptote: _______________ Pivot Point: _______________ Name if graph: ____________ Parent graph: _____________ Domain: _________________ Range: __________________ Asymptote: _______________ Pivot Point: ________________ 9. y ( x 2)2 5 Name of graph: _________ Parent graph: ___________ Domain: ________________ Range: _______________ Asymptote: ____________ Pivot Point: _____________ 12. f ( x) 2( x 3)3 2 Name of graph: _________ Parent graph: ___________ Domain: ________________ Range: _______________ Asymptote: ____________ Pivot Point: _____________ Describe how each of the following graphs transform in relation to the parent graph. 13. y x 8 9 _________________________________________________________________ 14. y 3 x 2 _________________________________________________________________ 21 1 15. y log( x 2) 3 _______________________________________________________________ 4 16. y 3x2 3 __________________________________________________________________ 1 17. y ( x)3 2 __________________________________________________________________ 3 18. y 2( x 1)3 ___________________________________________________________________ 19. y log x 5 __________________________________________________________________ 2 20. y x 2 3 __________________________________________________________________ 3 21. y 2 3 x 4 ___________________________________________________________________ 22. y 4 x 1 _____________________________________________________________________ Write an equation of each of the translated graphs. 23. If the graph of y 3 3 x is shifted left 5 units and up 2 units, what is the equation of the translated graph? 1 3 x is flipped over the x-axis and moved down 3 units, what is the 2 equation of the translated graph? 24. If the graph of y 25. If the graph of y log x is shifted left 4 units, up 5 units, and is vertically stretched by 3 what is the equation of the translated graph? 26. If the graph of y x is flipped over the x-axis and moved down 6 units, what is the equation of the translated graph? 27. If the graph of y 2 x is shifted left 1 units and up 7 units, what is the equation of the translated graph? 28. If the graph of y x 3 is flipped over the x-axis and moved down 7 units, what is the equation of the translated graph?
© Copyright 2026 Paperzz