MCR3UI Date: 1. Given the following ordered pairs, = {(βˆ’1

MCR3UI
Date: ________________________
1.
Given the following ordered pairs, 𝑔 = {(βˆ’1, βˆ’3), (1, βˆ’2), (3, 4), (5, 0), (6, 1)}, find the inverse, and graph the
function and its inverse.
2.
Given the ordered pairs of each function, find the inverse, and state whether the inverse is a function.
a) 𝑓 = {(βˆ’2, 3), (βˆ’1, 2), (0, 0), (4, βˆ’2)}
b) 𝑔 = {(4, βˆ’2), (2, 1), (1, 3), (0, βˆ’2), (βˆ’3, βˆ’3)}
3.
Sketch the inverse of each function.
a)
b)
𝑦 = 𝑓(π‘₯)
𝑦 = 𝑓(π‘₯)
c)
d)
𝑓(π‘₯) = 3π‘₯
𝑦 = 𝑓(π‘₯)
e)
f)
𝑓(π‘₯) = 2π‘₯ βˆ’ 1
𝑓(π‘₯) = 3 βˆ’ π‘₯
4.
Find the inverse of each function.
a)
𝑓(π‘₯) = π‘₯ βˆ’ 1
𝑓(π‘₯) = π‘₯ + 3
b)
c)
𝑓(π‘₯) = 2π‘₯ + 1
d)
5.
Find the inverse function of 𝑓(π‘₯) = π‘₯ + 2. Graph the function and its inverse.
6.
Find the inverse of 𝑓(π‘₯) =
7.
Determine if the functions in each pair are inverses of each other.
a)
π‘₯+3
4
and determine whether the inverse is a function.
𝑓(π‘₯) = 2π‘₯ βˆ’ 1 and 𝑔(π‘₯) =
π‘₯+1
b)
2
Answers:
1) π’ˆβˆ’πŸ = {(βˆ’πŸ‘, βˆ’πŸ), (βˆ’πŸ, 𝟏), (πŸ’, πŸ‘), (𝟎, πŸ“), (𝟏, πŸ”)}
2a) π’‡βˆ’πŸ = {(πŸ‘, βˆ’πŸ), (𝟐, βˆ’πŸ), (𝟎, 𝟎), (βˆ’πŸ, πŸ’)}, π’‡βˆ’πŸ is a function
4a) π’‡βˆ’πŸ (𝒙) = 𝒙 + 𝟏
4b) π’‡βˆ’πŸ (𝒙) = 𝒙 βˆ’ πŸ‘
5
𝑓(π‘₯) = 2 π‘₯ βˆ’ 4
π‘₯
𝑔(π‘₯) = 3 βˆ’ 5 and β„Ž(π‘₯) = 3π‘₯ + 5
2b) π’ˆβˆ’πŸ = {(βˆ’πŸ, πŸ’), (𝟏, 𝟐), (πŸ‘, 𝟏), (βˆ’πŸ, 𝟎), (βˆ’πŸ‘, βˆ’πŸ‘)}, π’ˆβˆ’πŸ is not a function
𝟏
𝟏
𝟐
𝟐
4c) π’‡βˆ’πŸ (𝒙) = 𝒙 βˆ’
𝟐
πŸ–
πŸ“
πŸ“
4d) π’ˆβˆ’πŸ (𝒙) = 𝒙 +
5) π’‡βˆ’πŸ (𝒙) = 𝒙 βˆ’ 𝟐
6) π’‡βˆ’πŸ = πŸ’π’™ βˆ’ πŸ‘, π’‡βˆ’πŸ (𝒙) is a function
7a) 𝒇(𝒙) & π’ˆ(𝒙) are inverse functions 7b) π’ˆ (𝒙) 𝒉(𝒙) are not inverse functions