Exploring new random matrix ensembles for PT-symmetric quantum systems Eva-Maria Graefe Department of Mathematics, Imperial College London, UK joint work with Steve Mudute-Ndumbe and Matthew Taylor Department of Mathematics, Imperial College London, UK Quantum and Classical Physics with non-Hermitian Operators (PHHQP13) Israel Institute for Advanced Studies, July 2015 Random Matrix Theory (RMT) « Matrices whose elements are random numbers Bohigas, Giannoni, Schmit, PRL 52 (1984) 1, Haake, quantum signatures of chaos, Springer, 2010 Random Matrix Theory (RMT) « Matrices whose elements are random numbers « Dyson & Wigner: Spectral properties of sufficiently complicated systems described by random matrices Bohigas, Giannoni, Schmit, PRL 52 (1984) 1, Haake, quantum signatures of chaos, Springer, 2010 Random Matrix Theory (RMT) « Matrices whose elements are random numbers « Dyson & Wigner: Spectral properties of sufficiently complicated systems described by random matrices Bohigas-Giannoni-Schmit conjecture: Spectral fluctuations of quantum system with chaotic classical counterpart similar to those of certain Hermitian random matrices. Bohigas, Giannoni, Schmit, PRL 52 (1984) 1, Haake, quantum signatures of chaos, Springer, 2010 Random Matrix Theory (RMT) « Matrices whose elements are random numbers « Dyson & Wigner: Spectral properties of sufficiently complicated systems described by random matrices Bohigas-Giannoni-Schmit conjecture: Spectral fluctuations of quantum system with chaotic classical counterpart similar to those of certain Hermitian random matrices. « Dyson’s threefold way: Gaussian symmetric, unitary and symplectic ensembles Bohigas, Giannoni, Schmit, PRL 52 (1984) 1, Haake, quantum signatures of chaos, Springer, 2010 Random Matrix Theory (RMT) « Matrices whose elements are random numbers « Dyson & Wigner: Spectral properties of sufficiently complicated systems described by random matrices Bohigas-Giannoni-Schmit conjecture: Spectral fluctuations of quantum system with chaotic classical counterpart similar to those of certain Hermitian random matrices. « Dyson’s threefold way: Gaussian symmetric, unitary and symplectic ensembles PT-symmetric RMT? Bohigas, Giannoni, Schmit, PRL 52 (1984) 1, Haake, quantum signatures of chaos, Springer, 2010 Outline « Standard Random Matrix Theory: Gaussian ensembles, spectral features, Ginibre ensemble « PT-symmetric as split-Hermitian systems: Split-complex numbers, split-quaternions, splitHermitian matrices i2 = 1 j2 = k2 = ijk = +1 « Split-Hermitian Gaussian ensembles Probability distribution on space of matrices, 2x2: Analytical results, relation to Ginibre ensemble Outline « Standard Random Matrix Theory: Gaussian ensembles, spectral features, Ginibre ensemble « PT-symmetric as split-Hermitian systems: Split-complex numbers, split-quaternions, splitHermitian matrices i2 = 1 j2 = k2 = ijk = +1 « Split-Hermitian Gaussian ensembles Probability distribution on space of matrices, 2x2: Analytical results, relation to Ginibre ensemble Dyson’s threefold way « Conventional closed quantum systems described by Hermitian Hamiltonians Dyson’s threefold way « Conventional closed quantum systems described by Hermitian Hamiltonians « Three important universality classes depending on time- reversal properties: « Real symmetric, invariant under orthogonal transformations: time- reversal symmetric with T 2 = 1 « Complex Hermitian, invariant under unitary transformations: no time-reversal symmetry « Quaternionic Hermitian, invariant under symplectic transformations: time-reversal symmetric with T 2 = 1 Dyson’s threefold way « Conventional closed quantum systems described by Hermitian Hamiltonians « Three important universality classes depending on time- reversal properties: « Real symmetric, invariant under orthogonal transformations: time- reversal symmetric with T 2 = 1 « Complex Hermitian, invariant under unitary transformations: no time-reversal symmetry « Quaternionic Hermitian, invariant under symplectic transformations: time-reversal symmetric with T 2 = 1 « Gaussian probability distributions on space of these matrices describe universal spectral features Dyson’s threefold way « Gaussian orthogonal/unitary/symplectic ensembles: A† + A Amn: independently distributed normal random variables over the real/complex numbers / H= 2 quaternions Dyson’s threefold way « Gaussian orthogonal/unitary/symplectic ensembles: A† + A Amn: independently distributed normal random variables over the real/complex numbers / H= 2 quaternions « Probability distribution on space of matrices: 8 > < e P(H) / e > : e 2 1 2 Tr(H ) , GOE Tr(H 2 ) , GUE 2Tr(H 2 ) , GSE « Invariant under orthogonal/unitary/symplectic transformations Dyson’s threefold way « Gaussian orthogonal/unitary/symplectic ensembles: A† + A Amn: independently distributed normal random variables over the real/complex numbers / H= 2 quaternions « Probability distribution on space of matrices: 8 > < e P(H) / e > : e 2 1 2 Tr(H ) , GOE Tr(H 2 ) , GUE 2Tr(H 2 ) , GSE « Invariant under orthogonal/unitary/symplectic transformations « Spectral properties analytically known for arbitrary matrix size 2x2 Gaussian ensembles « One-level distributions: GOE GUE GSE 8 3 3 R1 ( ) = p ( 4+ 2+ )e 2 16 3 2⇡ 2 2 2x2 Gaussian ensembles « One-level distributions: GUE GOE GSE 8 3 3 R1 ( ) = p ( 4+ 2+ )e 2 16 3 2⇡ « Level spacing distributions: P (s) = 8 > > > > < > > > > : ⇡ 2 4s ⇡ 2se 32 2 ⇡2 s e 218 4 36 ⇡ 3 s e , 4 2 ⇡s GOE , 64 2 9⇡ s GUE , GSE 2 2 The Ginibre ensembles « Gaussian random matrices without Hermiticity constraint « Real Ginibre ensemble: Matrices with independently distributed real normal random elements « Invariant under orthogonal transformations The Ginibre ensembles « Gaussian random matrices without Hermiticity constraint « Real Ginibre ensemble: Matrices with independently distributed real normal random elements « Invariant under orthogonal transformations « Real or complex conjugate eigenvalues « Analytically challenging, but many properties known PT-symmetric random matrix theory? « What about PT-symmetric random matrices? PT-symmetric random matrix theory? « What about PT-symmetric random matrices? PT-symmetric random matrix theory? « What about PT-symmetric random matrices? « Several attempts, mostly 2x2 (Jain, Ahmed, Wang et al.), beta type ensembles (Pato et. al.) PT-symmetric random matrix theory? « What about PT-symmetric random matrices? « Several attempts, mostly 2x2 (Jain, Ahmed, Wang et al.), beta type ensembles (Pato et. al.) « Universality and invariance classes? « Natural parameterisation of PT-symmetric matrices? PT-symmetric random matrix theory? « What about PT-symmetric random matrices? « Several attempts, mostly 2x2 (Jain, Ahmed, Wang et al.), beta type ensembles (Pato et. al.) « Universality and invariance classes? « Natural parameterisation of PT-symmetric matrices? Bender and Mannheim 2010: PT-symmetric matrices as complex matrices with real characteristic polynomial « PT-symmetric N ⇥ N matrices can be parameterised by 2N 2 N real parameters C. M. Bender and P. Mannheim, Phys. Lett. A 374 (2010) 1616 Outline « Standard Random Matrix Theory: Gaussian ensembles, spectral features, Ginibre ensemble « PT-symmetric as split-Hermitian systems: Split-complex numbers, split-quaternions, splitHermitian matrices i2 = 1 j2 = k2 = ijk = +1 « Split-Hermitian Gaussian enesmbles Probability distribution on space of matrices, 2x2: Analytical results, relation to Ginibre ensemble D. C. Brody and EMG, JPA 42 072001 (2011) Split-complex numbers « Hyperbolic version of complex numbers – imaginary unit squares to plus one z = x + jy « Conjugate: x, y 2 R z̄ = x jy j2 = +1 Split-complex numbers « Hyperbolic version of complex numbers – imaginary unit squares to plus one z = x + jy « Conjugate: x, y 2 R z̄ = x j2 = +1 jy « Representation as real 2x2 matrix: z$ ✓ x y y x ◆ Split-complex numbers « Hyperbolic version of complex numbers – imaginary unit squares to plus one z = x + jy « Conjugate: x, y 2 R z̄ = x j2 = +1 jy ✓ ◆ x y « Representation as real 2x2 matrix: z $ y x ✓ ◆ x y 2 « Indefinite “norm”: |z| = z z̄ = det = x2 y x y2 (Split)-quaternions z = z0 + iz1 + jz2 + kz3 zj 2 R Sir William Rowan Hamilton 1805 - 1865 Split-quaternions z = z0 + iz1 + jz2 + kz3 z 2 R j 2 i = 1 j2 = k2 = ijk = +1 Sir James Cockle 1819 - 1895 « Conjugate: z̄ = z0 iz1 jz2 kz3 Split-quaternions z = z0 + iz1 + jz2 + kz3 z 2 R j 2 i = 1 j2 = k2 = ijk = +1 Sir James Cockle 1819 - 1895 « Conjugate: « 2x2 matrix representation: z̄ = z0 iz1 z$ z0 + iz1 z2 iz3 ✓ jz2 kz3 z2 + iz3 z0 iz1 ◆ Split-quaternions z = z0 + iz1 + jz2 + kz3 z 2 R j 2 i = 1 j2 = k2 = ijk = +1 Sir James Cockle 1819 - 1895 « Conjugate: « 2x2 matrix representation: « Indefinite “norm”: z̄ = z0 iz1 z$ z0 + iz1 z2 iz3 ✓ z z̄ = z02 + z12 z22 jz2 z32 kz3 z2 + iz3 z0 iz1 ◆ Split-Hermitian matrices « “Inner product” on split-quaternionic vector space: (~u, ~v ) = N X ūn vn n=1 « Adjoint of split-quaternionic matrix: (~u, A~v ) = (A† ~u, ~v ) = transpose and split-quaternionic conjugate Split-Hermitian matrices « “Inner product” on split-quaternionic vector space: (~u, ~v ) = N X ūn vn n=1 « Adjoint of split-quaternionic matrix: (~u, A~v ) = (A† ~u, ~v ) = transpose and split-quaternionic conjugate “Split-Hermitian” matrices: H † = H Invariant under unitary transformations! Split-Hermitian matrices « Space of split-Hermitian N ⇥ N matrices has 2N 2 real dimensions N Split-Hermitian matrices « Space of split-Hermitian N ⇥ N matrices has 2N 2 real dimensions N « Use 2x2 matrix representation to define eigenvalues & eigenvectors ) Real characteristic polynomial ) Eigenvalues doubly degenerate in 2N ⇥ 2N problem Split-Hermitian matrices « Space of split-Hermitian N ⇥ N matrices has 2N 2 real dimensions N « Use 2x2 matrix representation to define eigenvalues & eigenvectors ) Real characteristic polynomial ) Eigenvalues doubly degenerate in 2N ⇥ 2N problem Split-Hermitian matrices can be viewed as a representation of PT-symmetric matrices! Split-Hermitian matrices « Space of split-Hermitian N ⇥ N matrices has 2N 2 real dimensions N « Use 2x2 matrix representation to define eigenvalues & eigenvectors ) Real characteristic polynomial ) Eigenvalues doubly degenerate in 2N ⇥ 2N problem Split-Hermitian matrices can be viewed as a representation of PT-symmetric matrices! « Split-complex Hermitian $ real PT-symmetric matrices « Zero inner product between eigenvectors belonging to distinct eigenvalues Outline « Standard Random Matrix Theory: Motivation, Gaussian ensembles, Ginibre ensemble « PT-symmetric as split-Hermitian systems: Split-complex numbers, split-quaternions, splitHermitian matrices i2 = 1 j2 = k2 = ijk = +1 « Split-Hermitian Gaussian ensembles Probability distribution on space of matrices, 2x2: Analytical results, relation to Ginibre ensemble Split-Hermitian Gaussian ensembles « Construct split versions of Gaussian unitary and symplectic ensembles: A† + A H= 2 Amn: independently distributed normal random variables over the split-complex numbers / splitquaternions EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 Split-Hermitian Gaussian ensembles « Construct split versions of Gaussian unitary and symplectic ensembles: A† + A H= 2 Amn: independently distributed normal random variables over the split-complex numbers / splitquaternions « Probability distributions on space of split-Hermitian matrices: Split-complex: Split-quaternionic: P(H) = ⇣ 1 ⌘ N2 ⇣ 2 ⌘ 12 N (N ⇡ 2 P(H) = ⇡ N 2 ⇡ 2 p ⇡ 2N (N 1) e 1) e Tr(HH T ) Tr(HH I +H I H) transpose & complex conjugation EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 Split-Hermitian Gaussian ensembles « Construct split versions of Gaussian unitary and symplectic ensembles: A† + A H= 2 Amn: independently distributed normal random variables over the split-complex numbers / splitquaternions « Probability distributions on space of split-Hermitian matrices: Split-complex: Split-quaternionic: P(H) = ⇣ 1 ⌘ N2 ⇣ 2 ⌘ 12 N (N ⇡ 2 P(H) = ⇡ N 2 ⇡ 2 p ⇡ 2N (N 1) e 1) e Tr(HH T ) Tr(HH I +H I H) transpose & complex conjugation « Invariant under orthogonal/unitary transformations! EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-complex Hermitian ensemble « 2 ⇥ 2 split-complex Hermitian matrix: H= ✓ ⇤1 +j j ⇤2 ◆ ⇤1,2 , , 2R « Probability distribution: 2 P(H) = 2 e ⇡ Tr(HHT ) 2 = 2e ⇡ (⇤21 +⇤22 +2 2 +2 2 ) EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-complex Hermitian ensemble « 2 ⇥ 2 split-complex Hermitian matrix: H= ✓ ⇤1 +j j ⇤2 ◆ ⇤1,2 , , 2R « Probability distribution: 2 P(H) = 2 e ⇡ Tr(HHT ) 2 = 2e ⇡ (⇤21 +⇤22 +2 2 +2 2 ) « Related to Ginibre ensemble in real 4 ⇥ 4 representation: 0 ⇤1 B 0 H$B @ 0 ⇤1 ⇤2 0 1 0 ⇤2 C B + T C=O B @ 0 0A ⇤2 0 ⇤1 0 0 0 0 ⇤1 1 0 0 C CO + A ⇤1 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-quaternionic Hermitian ensemble « 2 ⇥ 2 split-quaternionic Hermitian matrix: H= ✓ ⇤1 ✓ + iµ + j⌫ + k ✓ iµ j⌫ ⇤2 k ◆ ✓, µ, ⌫, 2R « Probability distribution: 32 P(H) = 3 e ⇡ 2(⇤21 +⇤22 +2(✓ 2 +µ2 +⌫ 2 + 2 )) EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-quaternionic Hermitian ensemble « 2 ⇥ 2 split-quaternionic Hermitian matrix: H= ✓ ⇤1 ✓ + iµ + j⌫ + k ✓ iµ j⌫ ⇤2 k ◆ ✓, µ, ⌫, 2R « Probability distribution: 32 P(H) = 3 e ⇡ 2(⇤21 +⇤22 +2(✓ 2 +µ2 +⌫ 2 + 2 )) Joint probability of eigenvalues, one-level densities, level spacings for real eigenvalues etc? EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-complex Hermitian ensemble 2|=( )| e R1 ( ) = p ⇡ 2(<( )2 =( )2 ) + (=( )) erfc(2|=( )|) ! 2 2 e e 2 erf( ) + p 2 2 ⇡ EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-complex Hermitian ensemble 2|=( )| e R1 ( ) = p ⇡ 2(<( )2 =( )2 ) + (=( )) erfc(2|=( )|) ! 2 2 e e 2 erf( ) + p 2 2 ⇡ 1 « Probability that eigenvalues are real: P ( 2 R) = p 2 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-complex Hermitian ensemble R1R ( )= 2 e 2 2 2 e erf( ) + p 2 ⇡ 1 « Probability that eigenvalues are real: P ( 2 R) = p 2 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-complex Hermitian ensemble R1R ( ) = 2 e 2 2 e 2 erf( ) + p 2 ⇡ GOE: EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-complex Hermitian ensemble R1I ( 2|=( )| e )= p ⇡ 2(<( )2 =( )2 ) erfc(2|=( )|) EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-quaternionic Hermitian ensemble r R1 ( ) =2 2 |=( )|e ⇡ + (=( )) 4 (<( ))2 +(=( ))2 e 2 h p + p 2 2 8 2⇡ 2⇡ e 4 2 2 2 +1 8 1 i 2 ! EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-quaternionic Hermitian ensemble r R1 ( ) =2 2 |=( )|e ⇡ + (=( )) 4 (<( ))2 +(=( ))2 e 2 h p + p 2 2 8 2⇡ 2⇡ e 4 2 « Probability that eigenvalues are real: P ( 2 2 +1 2 R) = 1 8 1 i 2 ! 1 p 2 2 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-quaternionic Hermitian ensemble R1R ( ) = 4 e 8 2 p 2 2⇡ e + p 2 2 2⇡ « Probability that eigenvalues are real: P ( h 2 2 +1 2 R) = 1 8 1 i 2 1 p 2 2 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-quaternionic Hermitian ensemble R1R ( ) = 4 e 8 2 p 2 2⇡ e + p 2 2 2⇡ h 2 2 +1 8 1 i 2 GUE: EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles « Analytic expressions for spectral properties « One-level distribution: Split-quaternionic Hermitian ensemble R1I ( )=2 r 2 |=( )|e ⇡ 4 (<( ))2 +(=( ))2 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 2x2 split-Hermitian ensembles Level spacing distributions for real eigenvalues split-complex ⇡ P (s) = se 2 split-quaternionic: P (s) = split-quaternionic ⇡ 2 4s p 2 a 1 1 p 2 2 as2 e p as ⇡ 2 + p 2 p as eas erfc( 2a s) p 2 2 EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 ! Summary « Hermitian Gaussian random matrices describe universal features of quantum systems with chaotic classical counterpart † H =H « Split-quaternionic Hermitian matrices as parameterisation of PT-symmetric matrices « Split-Hermitian Gaussian ensembles as new universality classes for PTsymmetric systems? EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810 Summary « Hermitian Gaussian random matrices describe universal features of quantum systems with chaotic classical counterpart † H =H Thank you for your attention! « Split-quaternionic Hermitian matrices as parameterisation of PT-symmetric matrices « Split-Hermitian Gaussian ensembles as new universality classes for PTsymmetric systems? EMG, S Mudute-Ndumbe, M Taylor, arxiv:1505.07810
© Copyright 2026 Paperzz