Sudoku Puzzle with Limits

Sudoku Puzzle with Limits
A Puzzle by David Pleacher
Solve the 28 limit problems below and place the answer in the corresponding cell
(labeled A, B, C, … Y, Z, a, b). Your answers should be integers from 1 to 9 inclusive.
Then solve the resulting SUDOKU puzzle.
The rules of Sudoku are simple.
Enter digits from 1 to 9 into the blank spaces.
Every row must contain one of each digit.
So must every column, and so must every 3x3 square.
Each Sudoku has a unique solution that can be reached logically without guessing.
A. lim3x
x 1
B. lim  2 x  5
x 2
C. lim  2 x 2  2 x  4 
x 2
D. lim
x 3
x2
x2
E. lim  9 
x7
F. lim
x 4
4  x 2  11x  28 
x 2 4x
x
G. lim 2 tan  

x
2
2
 x 2  4 14 
 
H. lim  2
x 2 x  4
x

  2  h 2  2 2 
I. lim 

h 0 

h


 4 x2 

J. lim 
2
x 2 

3

x

5


 10k  2 
K. lim 

k 
 2k  7 
L. lim
x 4
25  x 2

 x 
M. lim 12sin   
x 
 6 

 16 p 2  10 p  2 
N. lim 
2 
p 
 52p  2p 
 x2 4
O. lim 

x 2
 x2 
 x 2  x  12 
P. lim 

x 4
 x4 
Q. lim
x  1
2x 2  7 x  5
x 1
16
R. lim

x 0
S. lim
x 4

1 x  1
x
3x  23
2x  3
 x 2 1 
T. lim 

x 2
 x 1 
 2 x 3  54 
U. lim  2

x3
 x 9 
 2 x 2  8x  6 
V. lim  2

x 1
 x  3x  2 
 2x  2 
W. lim 

2
x 1
 x 3 2
X. lim
x 
 x
2
 5   2  x 2 
x 2  7 x  12
Y. lim
x 4
x4
 3x
 1 x
Z. lim 
x 1
1

 1 x 2







 2  2x 2  9x 4 
a. lim  4

x  x  3 x 3  2 x


b. lim
x 3
 x 2  7 x  12
x3

Here is a blank SUDOKU board for you to use:
Solution to the Sudoku With Limits Puzzle
A=3
B=9
C=8
D=5
E=9
F=3
G=2
H= 7
I=4
J=6
K=5
L=3
M=6
N=8
O=4
P=7
Q=3
R=8
S=1
T=3
U=9
V=4
W=4
X=7
Y=1
Z=6
a=9
b =1