Supplemental Data. Starting matrix, rate constants, and channel state dwell probabilities corresponding to the kinetic schemes shown in Figs. 7A-D. O: channel open states; C: channel closed states. For brevity, we use C4 to denote the “low activity mode” mentioned in the main text and Fig. 7. Starting matrix: the following set of seven differential equations represents the general kinetic model that is applied to all schemes described in Figure 7C & 7D of the manuscript. Note that for schemes shown in Fig. 7A and 7B (0.3 uM calcium in absence and presence of ethanol, respectively): kC3C4 = 0 and kC4C3 = 0. Next, rearrangement of terms in the right hand side of each equation (so that the states C1, C2, C3, C4, O1, O2, and O3 “line up” vertically) helps in the identification of the elements of the square transition matrix (i.e., Sij, with i, j = 1,2,3,4,5,6,7). 1 C1 C2 C3 C4 O1 O2 O3 rendering the following transition matrix system corresponding to the kinetic scheme: At steady-state (our experimental recording conditions), all seven derivatives on the left hand side of the above column matrix will become zero. Therefore: 2 From which we obtain the following equalities: that match the original equations shown above. Rate and equilibrium constants, and channel state dwell probabilities: Considering two channel dwell states “S1” and “S2”, we use the following notation: kS1S2: “forward”rate constant, kS2S1: “reverse” rate constant, and rS1S2: equilibrium rate constant, which results from: rS1S2=kS1S2/kS2S1. Based on the schemes shown in Fig. 7A-D, and considering that P=Pc+Po=1 where Pc: closed channel probability and Po: open channel probability, we have: Pc=PC1+PC2+PC3+PC4, where C4=low activity mode (Figs. 7C and D); Po=PO1+PO2+PO3 Therefore: Pc=PC1*(1 + rC1C2 + rC1C2*rC2C3 + rC1C2*rC2C3*rC3C4), and Po=PC1*(rC1O1 + rC1C2*rC2O2 + rC1C2*rC2C3*rC3O3), where PC1 = 1 / [ (1 + rC1C2 + rC1C2*rC2C3 + rC1C2*rC2C3*rC3C4) + (rC1O1 + rC1C2*rC2O2 + rC1C2*rC2C3*rC3O3) ] Please note that rC3C4=0, only for low calcium (0.3 uM), and rO2O3=0 because there are no O2-O3 transitions. 3 "Forward" Rate Constants kC1C2 = kC2C3 = kC3C4 = kC1O1 = kC2O2 = kC3O3 = kO1O2 = kO2O3 = "Reverse" Rate Constants kC2C1 = kC3C2 = kC4C3 = kO1C1 = kO2C2 = kO3C3 = kO2O1 = kO3O2 = "Equilibrium" Rate Constants rC1C2 = rC2C3 = rC3C4 = rC1O1 = rC2O2 = rC3O3 = rO1O2 = rO2O3 = Steady State Probabilities PC1 = PC1 = PC2 = PC3 = PC4 = PO1 = PO2 = PO3 = PClosed = POpen = Ptotal = 0.3 uM Ca2+ 0.3 uM Ca2+ ~+ Ethanol 65.7000 5.0000 0 123.1000 0.1100 0.0660 380.4000 0 515.6000 6.6000 0 133.0000 5.0000 0.0620 761.2000 0 0.3 uM Ca2+ 0.3 uM Ca2+ ~+ Ethanol 30 uM Ca2+ 2559.8000 283.1000 55.2600 5940.8000 5.0000 8024.9000 2077.5000 0 30 uM Ca2+ 30 uM Ca2+ ~+ Ethanol 2099.400000 264.2000 84.4400 5209.3000 1.3000 7254.5000 1797.5000 0 30 uM Ca2+ ~+ Ethanol 22.9000 4.7000 0 816.4000 1.4000 4239.5000 237.3000 0 243.4000 31.8000 0 458.0000 17.9000 144.5000 369.8000 0 905.6000 797.5000 136.8000 2906.7000 4.1000 568.4000 1223.9000 0 603.000000 639.8000 46.2600 3189.5000 2.5000 649.2000 1547.6000 0 0.3 uM Ca2+ 0.3 uM Ca2+ ~+ Ethanol 30 uM Ca2+ 30 uM Ca2+ ~+ Ethanol 2.8690 1.0638 0 0.1508 0.0786 0.0000 1.6030 0 0.3 uM Ca2+ 1.37E-01 0.137036 0.393155 0.418250 0 0.020663 0.030891 0.000007 0.948440 0.051560 1.000000 2.1183 0.2075 0 0.2904 0.2793 0.0004 2.0584 0 0.3 uM Ca2+ ~+ Ethanol 2.25E-01 0.225212 0.477071 0.099015 0 0.065400 0.133260 0.000042 0.801298 0.198702 1.000000 2.8266 0.3550 0.4039 2.0438 1.2195 14.1184 1.6974 0 30 uM Ca2+ 4.02E-02 0.040172 0.113552 0.040309 0.016283 0.082105 0.138478 0.569101 0.210316 0.789684 1.000000 3.4816 0.4129 1.8253 1.6333 0.5200 11.1745 1.1615 0 30 uM Ca2+ ~+ Ethanol 3.56E-02 0.035647 0.124109 0.051250 0.093548 0.058221 0.064536 0.572690 0.304553 0.695447 1.000000 4 Prob (C1,C2,C3,C4,O1,O2,O3) 1.00 Probability 0.90 0.80 O3 0.70 0.60 O2 0.50 C4 0.40 0.30 C3 0.20 0.10 C1 O1 C2 0.00 0.3 uM Ca2+ 0.3 uM Ca 0.3 uM Ca2+ 2+ 0.3 uM Ca + Ethanol 0.3 uM Ca2+ 2+ 30 uM Ca 2+ 0.3 uM Ca2+ 2+ 30 uM Ca + Ethanol The bar graph shows that at submicromolar calcium (0.3 μM), an increase in the probability of the channel dwelling in O2 and a decrease in the probability of the channel dwelling in C3 are the main contributors to ethanol-induced increase in overall Po. At 30 μM calcium, ethanol increases the probability of the channel to dwell in a “low activity mode” (C4) from <5% to >10%. This action, together with a decrease in the probability of channel dwelling in O2, leads to alcohol-induced reduction in overall Po. 5
© Copyright 2026 Paperzz