A General Class of Parametric Models for Recurrent Event Data Russell Stocker [email protected] University of South Carolina Research Supported by NSF Grant DMS 0102870 and NIH Grant GM056182 A General Class of Parametric Models for Recurrent Event Data – p.1/37 Overview of Talk Overview of Reliability and Survival Analysis Basics Recurrent Events and Examples General Class of Models No Frailty Case Frailty Case Data Example Future Work A General Class of Parametric Models for Recurrent Event Data – p.2/37 Reliability and Survival Basics Observe n units over a time period [0, t∗ ] Ti is the lifetime random variable for unit i F (t) = P (T ≤ t) (Cumulative Distribution Function) f (t) = d dt F (t) (Probability Density Function) Popular Choices for f (t) include Exponential, Gamma, Log-Normal, Inverse Gaussian, and Weibull Distributions A General Class of Parametric Models for Recurrent Event Data – p.3/37 Reliability and Hazard Function Reliability or Survivor Function R(t) = 1 − F (t) = 1 − P (T ≤ t) = P (T > t) Hazard Rate Function P (t ≤ T < t + ∆t|T ≥ t) λ(t) = lim ∆t↓0 ∆t λ(t)∆t ≈ probability of a failure in the next instant A General Class of Parametric Models for Recurrent Event Data – p.4/37 Cumulative Hazard Function Λ(t) = Z t λ(w)dw 0 How do we connect λ(t), Λ(t), R(t), and f (t)? A General Class of Parametric Models for Recurrent Event Data – p.5/37 Censoring The time at which a unit fails may not be observed in [0, t∗ ] Units may fail after some time tci (Right Censoring) For unit i, Ti > t∗ (Type I Censoring) The n units may be observed until r units fail (Type II Censoring) Right Censoring may be generalized to random censorship (tci ∼ Ci ) A General Class of Parametric Models for Recurrent Event Data – p.6/37 Recurrent Event Data Data which occurs when observing a repairable system. That is a system that when a failure occurs can be brought to operational condition through an intervention. A General Class of Parametric Models for Recurrent Event Data – p.7/37 Examples Repeated Fixing of Automobiles Bugs in Software Programs Recurrence of Tumors Repeated Incidences of Strokes Repetition of Conflict in a Geographical Region Recidivism Rate of Criminals A General Class of Parametric Models for Recurrent Event Data – p.8/37 Bladder Cancer Data Set 40 20 0 Subject 60 80 Bladder Data 0 10 20 30 40 50 60 calendar time A General Class of Parametric Models for Recurrent Event Data – p.9/37 General Mathematical Setting n units in a study Each ith unit is observed over a time period [0, τi ]. Si0 < Si1 < Si2 < . . . (Calendar Times) Tik = Sik − Sik−1 (Interoccurence Times) A General Class of Parametric Models for Recurrent Event Data – p.10/37 Counting and At Risk Processes † Ni (s) = ∞ X j=1 I(Sij ≤ s, Sij ≤ τi ) The number of events observed for unit i at time s which are not censored. Yi† (s) = I(τi ≥ s) Indicates if unit i is at risk at time s. A General Class of Parametric Models for Recurrent Event Data – p.11/37 Martingales Let (Ω, B, P ) be a probability space. A filtration Fs is a family of increasing sub σ − fields. (Event History) A martingale Mi (s) is a stochastic process that satisfies 1) E(|Mi (s)|) < ∞ 2) E(Mi (s)|Ft ) = Mi (t) for any t<s A martingale is a fair bet A central limit theorem exists for martingales. A General Class of Parametric Models for Recurrent Event Data – p.12/37 Class of Models Model given by Peña and Hollander (2003) (Ω, B, P ) with filtration Fs (Event History) Effective Age Process: Let {Ei (s)|0 ≤ s ≤ s∗ } be a class of observable predictable processes such that 1. Ei (0) = eio , almost surely where eio ∈ <+ ; 2. Ei (s) ≥ 0; 3. On [Sik−1 , Sik ), Ei (s) is monotone and almost surely differentiable with nonnegative derivative 0 Ei (s). A General Class of Parametric Models for Recurrent Event Data – p.13/37 Big Picture Effective Age Process E1 (s) 6 r r 0 - r r S11 S12 S13 τ1 -s A General Class of Parametric Models for Recurrent Event Data – p.14/37 Compensator Process A†i (s|Zi , Xi , δ) = Z s 0 Yi† (w)λi (w|Zi , Xi , δ)dw where δ = (θ, α, β)t , λi (s|Zi , Xi , δ) = † t Zi λ0 (Ei (s); θ)ρ[Ni (s−); α]ψ(β Xi (s)). A†i (s|Zi , Xi , δ) is called a compensator. Mi† (s) = Ni† (s) − A†i (s) is a martingale with respect to Fs A General Class of Parametric Models for Recurrent Event Data – p.15/37 Estimation Assuming No Frailty Likelihood Equation † Y (0)λi (0)∆s i 0 † Y (s1 )λi (s1 )∆s i s1 † Y (s2 )λi (s2 )∆s i s2 † Y (s3 )λi (s3 )∆s i s3 s∗ Let αi (s|δ) = Yi† (s)λi (s|δ) where δ = (θ, α, β)t . L(δ) = Qn ∆Ni† (w) (1−∆Ni† (w)) (1 − αi (w|δ)) } i=1 {w∈[0,s]αi (w|δ) Rs Qn ∆Ni† (w) αi (w|δ) exp(− 0 αi (w|δ)dw)} = i=1 { π π w∈[0,s] A General Class of Parametric Models for Recurrent Event Data – p.16/37 Estimation Assuming No Frailty l(δ) = − U (δ) = n Z sn X i=1 Z s 0 n Z X i=1 0 Yi† (w)λi (w|δ)dw s 0 log(Yi† (w)λi (w|δ))dNi† (w) ∂ † † log Yi (w) λi (w|δ) dMi (w) ∂δ A General Class of Parametric Models for Recurrent Event Data – p.17/37 Calendar/Gap Time Processes Ei (s, t) = I(Ei (s) ≤ t) Rs Ni (s, t) = 0 Ei (η, t)Ni† (dη) Rs † Ai (s, t) = 0 Ei (η, t)Ai (dη) Mi (s, t) = Ni (s, t) − Ai (s, t) = Rs 0 Ei (η, t)Mi† (dη) Mi (·, t) is a martingale with respect to Fs , but Mi (s, ·) is not a martingale with respect to Fs . A General Class of Parametric Models for Recurrent Event Data – p.18/37 Notation Eij−1 (s) = Ei (s)I(Sij−1 < s ≤ Sij ) Υij (s) = −1 (s))) ρ[j − 1; α]ψ(β t Xi (Eij−1 −1 0 Eij−1 (Eij−1 (t)) IEij−1 (η, Sij−1 , Sij ) = I(Eij−1 (Sij−1 ) < η ≤ Eij−1 (Sij )) A General Class of Parametric Models for Recurrent Event Data – p.19/37 Theoretical Results For i = 1, 2, . . . , n, Ai (s, t) = Z t Yi (s, η)λ0 (η; θ0 )dη 0 where, Yi (s, η) = +IE PNi† ((s∧τi )−) † iN ([s∧τi ]−) i j=1 IEij−1 (η, Sij−1 , Sij )Υij (η) (η, SiN † ([s∧τi ]−) , (s ∧ τi ))ΥiN † ([s∧τi ]−) (η) i i A General Class of Parametric Models for Recurrent Event Data – p.20/37 Theoretical Results For any s ≥ 0 and t ≥ 0, n Z t X 1 Hi (s, w)Mi (s, dw) W (s, t) ≡ √ n i=1 0 n Z s X 1 Hi (s, Ei (η))Mi (dη, t). = √ n i=1 0 A General Class of Parametric Models for Recurrent Event Data – p.21/37 Transformed Score Process U (δ; s, t) ∇θ log[λ0 (Ei (w); θ)] † = ∇α log[ρ[Ni (w−); α] Mi (dw, t) i=1 0 ∇β log[ψ(β t Xi (w))] ∇θ log[λ0 (η; θ)] n Z t X ∇α log[ρ[N † (E −1 (η)); α] Mi (s, dη) = i i i=1 0 ∇β log[ψ(β t Xi (Ei−1 (η))] Z n X s A General Class of Parametric Models for Recurrent Event Data – p.22/37 Main Asymptotic Results The score process equation has a solution (θ̂, α̂, β̂)t which is consistent. i √ h d t t n (θ̂, α̂, β̂) − (θ, α, β) → N (0, Σ) Σ̂ = I −1 (observed information matrix) A General Class of Parametric Models for Recurrent Event Data – p.23/37 Simulation Studies λi (·; θ) = θ1 θ2 (θ1 Ei (s)) θ2 −1 Ni† (s−) α exp(β t (Xi )) θ1 = 1 and θ2 ∈ {.8, 2} α ∈ {.8, 1, 1.05} and β = (1, −1)t An item was repaired after a failure with probability equal to 0.6 (Brown and Proschan Imperfect Repair Model) X1 ∼ Ber(0.5) X2 ∼ N (0, 1) n ∈ {10, 30, 50} τi ∼Exp(0.1) (Max Events=50) 1500 repetitions for each combination A General Class of Parametric Models for Recurrent Event Data – p.24/37 Histograms ^ Histogram of α ^ Histogram of α 30 20 Density 20 10 15 Density 10 0.70 0.75 0.80 0.85 0 0 0 5 10 5 Density 25 15 40 30 35 50 ^ Histogram of α 0.77 0.79 0.81 0.83 0.76 0.78 0.80 0.82 ^ (n=30) α ^ (n=50) α ^ Histogram of θ 1 ^ Histogram of θ 1 ^ Histogram of θ 1 3 2 Density 0.5 1.5 2.5 ^ (n=10) θ 1 3.5 0 0.0 0.0 0.5 1 1.0 1.5 Density 0.5 Density 2.0 1.0 2.5 3.0 1.5 ^ (n=10) α 0.8 1.0 1.2 ^ (n=30) θ 1 1.4 0.8 1.0 1.2 1.4 ^ (n=50) θ 1 A General Class of Parametric Models for Recurrent Event Data – p.25/37 Histograms ^ Histogram of θ 2 ^ Histogram of θ 2 8 6 Density 0.7 0.8 0.9 1.0 1.1 0.70 0.80 0.90 0.75 0.80 0.85 0.90 ^ (n=30) θ 2 ^ (n=50) θ 2 ^ Histogram of β1 ^ Histogram of β1 ^ Histogram of β1 2 Density 2.0 1.5 1.0 Density 1.0 0.5 1.0 1.5 ^ β1 (n=10) 2.0 0 0.0 0.5 1 0.5 0.0 Density 3 2.5 4 3.0 ^ (n=10) θ 2 1.5 0.6 0 0 0 2 1 2 4 2 4 6 Density 3 Density 4 8 10 5 12 10 6 14 ^ Histogram of θ 2 0.8 1.0 1.2 ^ β1 (n=30) 1.4 0.8 1.0 1.2 ^ β1 (n=50) A General Class of Parametric Models for Recurrent Event Data – p.26/37 Histograms ^ Histogram of β2 ^ Histogram of β2 −1.6 −1.2 −0.8 ^ β2 (n=10) 3 0 0 0.0 1 1 0.5 2 2 Density Density 1.0 Density 3 4 1.5 5 4 2.0 6 5 2.5 ^ Histogram of β2 −1.2 −1.0 ^ β2 (n=30) −0.8 −1.2 −1.0 −0.8 ^ β2 (n=50) A General Class of Parametric Models for Recurrent Event Data – p.27/37 Simulated Means α θ2 n µ̂E θ̄1 θ̄2 ᾱ β̄1 β̄2 0.80 0.8 10 12.078 1.035 0.823 0.792 1.044 −1.037 0.80 0.8 30 12.194 1.020 0.807 0.797 1.010 −1.010 0.80 0.8 50 12.215 1.012 0.804 0.798 1.003 −1.009 1.00 0.8 10 37.765 1.009 0.807 1.000 1.013 −1.015 1.00 0.8 30 37.856 1.009 0.802 1.000 1.002 −1.002 1.00 0.8 50 37.781 1.000 0.801 1.000 1.001 −1.002 1.05 0.8 10 42.168 1.010 0.806 1.050 1.009 −1.008 1.05 0.8 30 42.165 1.006 0.801 1.050 1.001 −1.001 1.05 0.8 50 42.093 1.000 0.801 1.050 1.002 −1.002 A General Class of Parametric Models for Recurrent Event Data – p.28/37 Standard Error Comparisons α θ2 n µ̂E σ̂θ1 σ̃θ1 σ̂θ2 σ̃θ2 0.80 0.8 10 12.078 0.290 0.264 0.063 0.062 0.80 0.8 30 12.194 0.138 0.137 0.035 0.034 0.80 0.8 50 12.215 0.106 0.104 0.027 0.026 1.00 0.8 10 37.765 0.164 0.158 0.033 0.033 1.00 0.8 30 37.856 0.088 0.085 0.018 0.019 1.00 0.8 50 37.781 0.065 0.065 0.014 0.014 1.05 0.8 10 42.168 0.156 0.152 0.032 0.031 1.05 0.8 30 42.165 0.082 0.082 0.018 0.017 1.05 0.8 50 42.093 0.064 0.063 0.014 0.014 A General Class of Parametric Models for Recurrent Event Data – p.29/37 Standard Error Comparisons α θ2 n µ̂E σ̂α σ̃α σ̂β1 σ̃β1 σ̂β2 σ̃β2 0.80 0.8 10 12.078 0.022 0.021 0.252 0.238 0.160 0.151 0.80 0.8 30 12.194 0.012 0.011 0.120 0.121 0.076 0.075 0.80 0.8 50 12.215 0.009 0.009 0.089 0.092 0.057 0.057 1.00 0.8 10 37.765 0.004 0.004 0.137 0.132 0.090 0.084 1.00 0.8 30 37.856 0.002 0.002 0.069 0.067 0.043 0.042 1.00 0.8 50 37.781 0.002 0.002 0.052 0.051 0.032 0.032 1.05 0.8 10 42.168 0.004 0.004 0.133 0.124 0.083 0.077 1.05 0.8 30 42.165 0.002 0.002 0.063 0.063 0.040 0.039 1.05 0.8 50 42.093 0.002 0.002 0.049 0.048 0.030 0.030 A General Class of Parametric Models for Recurrent Event Data – p.30/37 Frailty Case Zi is unobservable Zi ∼ Gamma(η, η) (E(Zi ) = 1 and Var(Zi ) = η1 ) We must integrate out the Zi s from the full likelihood We obtain a marginal partial likelihood L(δ, η) = n Y i=1 × ( ηη Γ(η + Ni† (s)) Rs † Γ(η) (η + Yi (w)λi (w; θ)dw)η+Ni† (s) 0 † 4Ni† (w) (Yi (w)λi (w; δ)) ∗ π w∈[0,s ] A General Class of Parametric Models for Recurrent Event Data – p.31/37 EM Algorithm Step 1: Give initial guess for η and δ. Step 2 (E-Step): Ẑi = E(Zi |η, δ) = Step 3 (M-Step): η+Ni† (s) Rs † η+ 0 Yi (w)λi (w|δ)dw M-Step 1: Find δ̂ using E(Zi |η, δ) for Z in partial likelihood M-Step 2: Find η̂ by maximizing marginal partial likelihood Step 4: Check for convergence and repeat steps 2 and 3 if necessary. A General Class of Parametric Models for Recurrent Event Data – p.32/37 Visualization of Data 40 20 0 Subject 60 80 Bladder Data 0 10 20 30 40 50 60 calendar time A General Class of Parametric Models for Recurrent Event Data – p.33/37 Real Data Set Bladder Cancer Data Set in Wei et. al. (1989) Times of Recurrence of Bladder Cancer Data for 86 subjects Fit using Weibull Hazard ρ[Ni† (s−); α] =α Ni† (s−) Covariates: X1 indicates treatment (Placebo or Thiotepa) X2 the size of the largest tumor X3 number of initial tumors Ei (s) = s A General Class of Parametric Models for Recurrent Event Data – p.34/37 Bladder Data Estimates Parameter Frailty Estimates Non Frailty Estimates η 0.576 ∞ θ1 0.096 0.055 θ2 1.235 0.836 α 0.60 1.013 β1 -0.707 -0.389 β2 -0.026 -0.040 β3 0.280 0.159 A General Class of Parametric Models for Recurrent Event Data – p.35/37 Baseline Survivor Functions 1.0 Placebo vs. Thiotepa Baseline Survivor Functions 0.6 0.4 0.2 0.0 ^ S0(s) 0.8 Placebo (F) Thiotepa (F) Placebo (NF) Thiotepa (NF) 0 20 40 60 80 100 s A General Class of Parametric Models for Recurrent Event Data – p.36/37 Future Work Construction of Goodness of Fit Tests Frailty Case Bayesian Approach Competing Risks with Masked Failures Additive Hazards Model A General Class of Parametric Models for Recurrent Event Data – p.37/37
© Copyright 2026 Paperzz