Introduction The factorization of n! Upper and lower bounds for B About the formalization of some results by Chebyshev in number theory via the Matita ITP Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Dipartimento di Scienze dell’Informazione Mura Anteo Zamboni 7, Bologna [email protected] January 19, 2009 Outline Introduction 1 Introduction 2 The factorization of n! Upper and lower bounds for B 3 Chebishev’s Ψ function 4 Bertrand’s postulate Erdös approach (1932) Automatic check The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Matita in a nutshell Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Matita in a nutshell Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check A light version of Coq. Matita in a nutshell Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check A light version of Coq. Some distinctive features: a primitive notion of metavariable a sophisticated disambiguation mechanism a powerful coercion system tynicals a mathml compliant goal window semantic selection, cut & paste Style of the talk Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Style of the talk Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check I will describe the subject in a way suited to formalization but not the formal details. Style of the talk Introduction The factorization of n! Upper and lower bounds for B I will describe the subject in a way suited to formalization but not the formal details. Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check At a few points I will point out some tricky aspects of the formal encoding. The Prime Number Theorem Introduction The factorization of n! Let π(n) denote the number of primes not exceeding n. Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Theorem (Hadamard and La Vallé Poussin, 1896) π(n) ∼ n/log(n) The Prime Number Theorem Introduction The factorization of n! Let π(n) denote the number of primes not exceeding n. Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Theorem (Hadamard and La Vallé Poussin, 1896) π(n) ∼ n/log(n) Formalized by Avigad et al. in Isabelle (ACM-TOCL 9(1), 2007), following Selberg’s “elementary” proof (1949). Chebyshev’s Theorem Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Theorem (Chebyshev, 1850) There are two constants c1 and c2 such that, for any n c1 n n ≤ π(n) ≤ c2 log(n) log(n) Chebyshev’s Theorem Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Theorem (Chebyshev, 1850) There are two constants c1 and c2 such that, for any n c1 n n ≤ π(n) ≤ c2 log(n) log(n) Motivations for the formalization: Chebyshev’s Theorem Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Theorem (Chebyshev, 1850) There are two constants c1 and c2 such that, for any n c1 n n ≤ π(n) ≤ c2 log(n) log(n) Motivations for the formalization: important machinery for number theory: ψ, θ, . . . Chebyshev’s Theorem Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Theorem (Chebyshev, 1850) There are two constants c1 and c2 such that, for any n c1 n n ≤ π(n) ≤ c2 log(n) log(n) Motivations for the formalization: important machinery for number theory: ψ, θ, . . . methodology: provide a purely arithmetical (and constructive) formalization Chebyshev’s Theorem Introduction Theorem (Chebyshev, 1850) There are two constants c1 and c2 such that, for any n The factorization of n! c1 Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check n n ≤ π(n) ≤ c2 log(n) log(n) Motivations for the formalization: important machinery for number theory: ψ, θ, . . . methodology: provide a purely arithmetical (and constructive) formalization To spare logs: 2c1 n ≤ nπ(n) ≤ 2c2 n Outline Introduction 1 Introduction 2 The factorization of n! Upper and lower bounds for B 3 Chebishev’s Ψ function 4 Bertrand’s postulate Erdös approach (1932) Automatic check The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check The factorization of n! Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Chebyshev’s approach: exploit the decomposition of the number n! as a product of prime numbers. The factorization of n! Introduction The factorization of n! Chebyshev’s approach: exploit the decomposition of the number n! as a product of prime numbers. Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check For any prime p, the numbers 1, 2, . . . , n include just multiples of p, pn2 multiples of p2 , an so on. Hence n! = Y Y pn/p p≤n i<logp (n) (see e.g. Hardy & Wright’s, pag. 342). i+1 n p (1) A formal proof:(1) the factorization of n Introduction The factorization of n! Every integer n may be uniquely decomposed as the product of all its prime factors. Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Le us write ordp (n) for the multiplicity of p in n; then Y Y Y n= pordp (n) = p Erdös approach (1932) p≤n Automatic check for p prime. p≤n i < logp (n) pi+1 |n (2) A formal proof:(2) the factorization of n Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check A direct proof by induction on the upper bound of the product. A formal proof:(2) the factorization of n Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check A direct proof by induction on the upper bound of the product. We have to rephrase the statement in the form Y ∀m > c(n), n = pordp (n) p≤m A formal proof:(2) the factorization of n Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check A direct proof by induction on the upper bound of the product. We have to rephrase the statement in the form Y ∀m > c(n), n = pordp (n) p≤m To make induction work c(n) must be miminal: in this case, the largest prime factor of n (mpf (n)) Y ∀m > mpf (n), n = pordp (n) p≤m A formal proof:(3) the factorization of n in matita Introduction The factorization of n! definition mpf n := max n (λ i .primeb i ∧ i | n). Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check theorem lt max to pi p primeb: ∀ m,n. O<n→ mpf n < m → n = pi p m (λ i .primeb i ∧ i | n) (λ p.pˆ(ord n p )). A formal proof:(4) the factorization of n! Introduction The factorization of n! n! = m 1≤m≤n = Upper and lower bounds for B Y Y 1≤m≤n p≤m Chebishev’s Ψ function Bertrand’s postulate Y = Y i < logp (m) pi+1 |m Y Y p≤n p≤m≤n Erdös approach (1932) p Y p i < logp (m) pi+1 |m Automatic check = Y Y p≤n i<logp (n) = Y Y p≤n i<logp (n) Y m≤n pi+1 |m pn/p i+1 p The binomial coefficient B(2n) = ( For 2n we have: 2n! = Introduction The factorization of n! But Automatic check p2n/p i+1 (3) n 2n 2n = 2 i+1 + ( i+1 mod 2) pi+1 p p Moreover, if n ≤ p or logp (n) ≤ i we have n =O pi+1 Bertrand’s postulate Erdös approach (1932) Y p≤2n i<logp (2n) Upper and lower bounds for B Chebishev’s Ψ function Y 2n ) n Hence, if we define B(n) = Y Y p(n/p i+1 mod 2) p≤n i<logp (n) equation (3) becomes 2n! = n!2 B(2n) (4) Upper and lower bounds for B Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check By induction on n we easily prove: 2n! 22n ≤ B(2n) = 2 ≤ 22n−1 2n n! Upper and lower bounds for B Introduction The factorization of n! Upper and lower bounds for B By induction on n we easily prove: 2n! 22n ≤ B(2n) = 2 ≤ 22n−1 2n n! Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) For technical reasons, we need a slightly stronger results, namely, Automatic check B(2n) = that holds for any n larger than 4. 2n! ≤ 22n−2 n!2 Outline Introduction 1 Introduction 2 The factorization of n! Upper and lower bounds for B 3 Chebishev’s Ψ function 4 Bertrand’s postulate Erdös approach (1932) Automatic check The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Chebishev’s Ψ function Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Ψ(n) = Y p≤n plogp (n) Chebishev’s Ψ function Introduction The factorization of n! Ψ(n) = Y plogp (n) p≤n Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Chebyshev’s ψ is the naperian logarithm of Ψ: Erdös approach (1932) Automatic check ψ= X log n p≤n log p log p Relation between Ψ and π Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Ψ(n) = Y plogp (n) ≤ p≤n nπ(n) ≤ Y p≤n plogp (n)+1 ≤ Y n = nπ(n) (5) p≤n Y p≤n p2logp (n) = Ψ(n)2 (6) Relation between Ψ and π Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Ψ(n) = Y plogp (n) ≤ p≤n nπ(n) ≤ Y p≤n plogp (n)+1 ≤ Y n = nπ(n) (5) p≤n Y p2logp (n) = Ψ(n)2 p≤n Erdös approach (1932) Automatic check Next: provide lower and upper bounds for Ψ. (6) Ψ lower bound Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check We have: Ψ(n) = Y p≤n plogp (n) = Y Y p≤n i<logp (n) p ≥ B(n) Ψ lower bound Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check We have: Ψ(n) = Y p≤n plogp (n) = Y Y p ≥ B(n) p≤n i<logp (n) Hence, the lower bound for B gives a lower bound for Ψ: 22n /2n ≤ B(2n) ≤ Ψ(2n) (7) Ψ lower bound Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) We have: Ψ(n) = Y p≤n plogp (n) = Y Y p ≥ B(n) p≤n i<logp (n) Hence, the lower bound for B gives a lower bound for Ψ: 22n /2n ≤ B(2n) ≤ Ψ(2n) (7) Automatic check In particular, since Ψ is monotonic 2n/2 ≤ Ψ(n) (8) Ψ upper bound (1) Introduction The factorization of n! For the upper bound, let us first observe that Y Y Ψ(2n) = ( pj(n,p,i) )Ψ(n) p≤2n i<logp (2n) Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check where j(n, p, i) is 1 if n < pi+1 and 0 otherwise. (9) Ψ upper bound (1) Introduction The factorization of n! For the upper bound, let us first observe that Y Y Ψ(2n) = ( pj(n,p,i) )Ψ(n) p≤2n i<logp (2n) Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) where j(n, p, i) is 1 if n < pi+1 and 0 otherwise. Indeed Ψ(2n) = Automatic check Y Y p p≤2n i<logp (2n) = ( Y Y pj(n,p,i) )( p≤2n i<logp (2n) = ( Y Y p≤2n i<logp (2n) Y Y p≤2n i<logp (2n) p j(n,p,i) )Ψ(n) p1−j(n,p,i) ) (9) Ψ upper bound (2) Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Then observe that Y Y Y pj(n,p,i) ≤ B(2n) = p≤2n i<logp (2n) Y p≤2n i<logp (2n) since if n < pi+1 then 2n/pi+1 mod 2 = 1. p(2n/p i+1 mod 2) Ψ upper bound (2) Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Then observe that Y Y Y pj(n,p,i) ≤ B(2n) = p≤2n i<logp (2n) Y p(2n/p i+1 mod 2) p≤2n i<logp (2n) since if n < pi+1 then 2n/pi+1 mod 2 = 1. Hence: Ψ(2n) ≤ B(2n)Ψ(n) (10) Ψ upper bound (2) Introduction Using B upper estimates, we have, for any n The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Ψ(2n) ≤ 22n−1 Ψ(n) (11) Ψ(2n) ≤ 22n−2 Ψ(n) (12) and for 4 < n Ψ upper bound (2) Introduction Using B upper estimates, we have, for any n The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Ψ(2n) ≤ 22n−1 Ψ(n) (11) Ψ(2n) ≤ 22n−2 Ψ(n) (12) and for 4 < n Bertrand’s postulate Erdös approach (1932) Automatic check We may now use inductively these extimates to prove Ψ(n) ≤ 22n−3 (13) Summary Introduction In conclusion, The factorization of n! 22n ≤ B(2n) ≤ 22n−1 2n Upper and lower bounds for B Chebishev’s Ψ function 2n ≤ Ψ(n) ≤ 22n−3 n Bertrand’s postulate Erdös approach (1932) Automatic check 2n/2 ≤ 2n ≤ Ψ(n) ≤ nπ(n) ≤ Ψ(n)2 ≤ 24n−6 ≤ 24n n (14) Outline Introduction 1 Introduction 2 The factorization of n! Upper and lower bounds for B 3 Chebishev’s Ψ function 4 Bertrand’s postulate Erdös approach (1932) Automatic check The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Bertrand’s postulate Chebyshev’s approach was similar but more precise: Introduction The factorization of n! (c1 +o(1)) Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check n n ≤ π(n) ≤ (c2 +o(1)) logn logn (n → ∞) with c1 = log(21/2 31/3 51/5 30−1/30 ) ≈ 0.92129 c2 = 6/5c1 ≈ 1.10555 Bertrand’s postulate Chebyshev’s approach was similar but more precise: Introduction The factorization of n! (c1 +o(1)) Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check n n ≤ π(n) ≤ (c2 +o(1)) logn logn (n → ∞) with c1 = log(21/2 31/3 51/5 30−1/30 ) ≈ 0.92129 c2 = 6/5c1 ≈ 1.10555 In particular, since c2 < 2c1 π(2n) > π(n) for all large n (Bertrand’s postulate). Erdös approach (1932) Introduction The factorization of n! Let k(n, p) = Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) X (n/pi+1 mod 2) i<logp n Then, B(n) = Y pk(n,p) p≤n Automatic check We now split this product in two parts B1 and B2 , according to k(n, p) = 1 or k (n, p) > 1. case k (n, p) = 1 Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Suppose that Bertrand postulate is false: there is no prime between n and 2n. Morevoer, if 2n 3 < p ≤ n, then k(2n, p) = X i<logp n (n/pi+1 mod 2) = 0 case k (n, p) = 1 Introduction The factorization of n! Suppose that Bertrand postulate is false: there is no prime between n and 2n. Morevoer, if 2n 3 < p ≤ n, then Upper and lower bounds for B k(2n, p) = Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check X (n/pi+1 mod 2) = 0 i<logp n Indeed 2n/p = 2 for i > 1, and n ≥ 6, 2n/pi = 0, since 2n ≤ ( 2n 2 ) ≤ pi 3 case k (n, p) = 1 Introduction The factorization of n! Upper and lower bounds for B Summing up, assuming Bertrand’s postulate is false, Y B1 (2n) = p p ≤ 2n k(2n, p) = 1 Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) = Y p p≤2n/3 Automatic check ≤ Ψ(2n/3) ≤ 22∗(2n/3) case k (n, p) > 1 k(n, p) = Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check X i<logp n (n/pi+1 mod 2) ≤ logp n case k (n, p) > 1 k(n, p) = Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check X (n/pi+1 mod 2) ≤ logp n i<logp n k (2n, p) ≥ 2 ⇒ logp 2n ≥ 2 ⇒ p ≤ √ 2n case k (n, p) > 1 k(n, p) = Introduction The factorization of n! X (n/pi+1 mod 2) ≤ logp n i<logp n k (2n, p) ≥ 2 ⇒ logp 2n ≥ 2 ⇒ p ≤ Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate B2 (2n) = Y pk(2n,p) p ≤ 2n 2 ≤ k(2n, p) Erdös approach (1932) Automatic check ≤ Y 2n √ p≤ 2n √ = (2n)π( √ ≤ (2n) 2n) 2n/2−1 √ 2n A contradictory upper bound Introduction The factorization of n! Putting everything together, assuming Bertrand’s postulate is false, we would have, for any n ≥ 27 Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check 22n ≤ 2nB(2n) = 2nB1 (2n)B2 (2n) ≤ 22(2n/3) (2n) √ 2n/2 that, by algebraic manipulations and taking logarithms, gives √ 2n 2n ≤ (log2n + 1) 3 2 Make the contradiction explicit Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Make the contradiction explicit Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check find an integer m such that for all values larger than m the equation √ 2n 2n ≤ (log2n + 1) 3 2 is false Make the contradiction explicit Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check find an integer m such that for all values larger than m the equation √ 2n 2n ≤ (log2n + 1) 3 2 is false only use arithmetical means Make the contradiction explicit Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check find an integer m such that for all values larger than m the equation √ 2n 2n ≤ (log2n + 1) 3 2 is false only use arithmetical means m must be sufficiently small to allow to check the remaining cases automatically in a feasible time. Reduce √ 2n 2n (log2n + 1) < 2 3 Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check to √ (∗) using the fact that 2n 2n (log2n + 1) ≤ 2 4 n n < m+1 m for any n ≥ m2 (in our case, n ≥ 8). Then transform (∗) to 2(log n + 2)2 ≤ n Introduction Use the fact that for any a > 0 and any n ≥ 4a The factorization of n! 2a n2 ≤ 2n Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check to get, for any n ≥ 28 2(log n + 2)2 ≤ 4(log n)2 = 22 (log n)2 ≤ 2log n n Automatic check Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check To complete the proof, we have to check that Bertrand’s postulate is true for all integers less then 28 . To this aim, we Automatic check Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check To complete the proof, we have to check that Bertrand’s postulate is true for all integers less then 28 . To this aim, we 1 generate the list of all primes up to the first prime larger than 28 (in reverse order) Automatic check Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check To complete the proof, we have to check that Bertrand’s postulate is true for all integers less then 28 . To this aim, we 1 generate the list of all primes up to the first prime larger than 28 (in reverse order) 2 check that for any pair pi , pi+1 of consecutive primes in such list, pi < 2pi+1 Automatic check Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check To complete the proof, we have to check that Bertrand’s postulate is true for all integers less then 28 . To this aim, we 1 generate the list of all primes up to the first prime larger than 28 (in reverse order) 2 check that for any pair pi , pi+1 of consecutive primes in such list, pi < 2pi+1 Both the generation of the list and its check are performed automatically (takes few seconds). Using reflection, prove that our algorithm for generating primes is correct and complete, and that the previous check is equivalent to Bertrand’s postulate, on the given interval. Eratosthene’s sieve Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check To generate primes we use the following sieve of Eratosthene let rec sieve aux l1 l2 t on t := match t with [ O ⇒ l1 (∗ this case is vacuous ∗) | S t1 ⇒ match l2 with [ nil ⇒ l1 | cons n tl ⇒ sieve aux (n :: l1 ) ( filter nat tl (λ x.notb (x | n ))) t1 ]]. definition sieve m := sieve aux [] ( list n m) m. Checking Bertrand’s condition Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check To check that each element of the list is less than twice its successor: let rec check list l \def match l with [ nil ⇒ true | cons hd tl ⇒ match tl with [ nil ⇒ hd = 2 | cons hd1 tl1 ⇒ hd1 < hd ∧ hd ≤2∗hd1 ∧ check list tl ] ] . Resources - library integrations Prerequisites and integrations to the library Introduction logarithms, square root (632 lines) The factorization of n! inequalities involving integer division (339 lines) Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check magnitude of functions (255 lines) decomposition of a number n as a product of its primes (250 lines) binomial coefficients (260 lines) properties of the factorial function, lower and upper 2n bounds of the binomial coefficient ( ) (303 lines) n P Q integrations to the library for and (148 lines) operations over lists (224 lines) Resources - other Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check Selection from the garbage collector Chebyshev’s Θ function (500 lines) Abel summation (209 lines) Upper and lower bounds for Euler’s e constant (1154 lines) Resources - other Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) Automatic check ln. h. prereq. 2411 54 chebys. 2073 51 bertrand 743 21 check 526 16 other 1863 48 total 7616 190 1.5 min per script line in Hardy’s book [6], the proof of Bertrand’s postulate takes 42 lines, while Chebyshev’s theorem takes precisely three pages (90 lines): De Brujin factor ≈ 20-25 1.5 hours/source mathematical line. Bibliography T.M.Apostol. Introduction to Analytic Number Theory. Springer Verlag, 1976. Introduction The factorization of n! Upper and lower bounds for B Chebishev’s Ψ function Bertrand’s postulate Erdös approach (1932) A.Asperti, C.Armentano. A Page In Number Theory. Journal of Formalized Reasoning. Vol.1, 2008. J.Avigad, K.Donnelly, D.Gray, P.Raff. A formally verified proof of the prime number theorem. ACM Transactions on Computational Logic, 9(1), 2007. To appear in the ACM Transactions on Computational Logic. P.Erdös. Beweis eines Satzes von Tschebyschef. In Acta Scientifica Mathematica, volume 5, pages 194-198, 1932. G.J.O.Jameson. The Prime Number Theorem. London Mathematical Society Student Texts 53, Cambridge University Press, 2003. Automatic check G.H.Hardy, E.M.Wright. An introduction to the theory of numbers, Oxford University Press, 1938. Fourth edition 1975. G.Tenenbaum, M.Mendes France. The Prime Numbers and Their Distribution. Student Mathematical Library, American Mathematical Society,2000. L.Théry. Proving Pearl: Knuth’s Algorithm for Prime Numbers. Proceeedings of TPHOLs’03, LNCS 2758, pp.304-318, 2003.
© Copyright 2026 Paperzz