Review

Distribution Function properties
1. FX ()  0
2.
3.
4.
5.
FX ()  1
0  FX ( x)  1
FX ( x1 )  FX ( x2 )
if x1  x2
P  x1  X  x2   FX ( x2 )  FX ( x1 )
6. FX ( x  )  FX ( x)
FX ( x)  P ( X  0) u ( x)  P ( X  1) u ( x  1)  P ( X  2) u ( x  2)  P ( X  3) u ( x  3)
step function
step function
step function
step function
Density Function
– We define the derivative of the distribution function FX(x) as
the probability density function fX(x).
dFX ( x)
d  N

f X ( x) 
   P ( X  xi )u ( x  xi )  
dx  i 1

dx
N
 P( x ) ( x
i 1
i
 xi )
Properties of Density Function
1.
2.
f X ( x)  0



for all x
f X ( x)dx  1
3. FX ( x) 

x

f X ( ) d 
4. P  x1  X  x2  

x2
x1
f X ( x)dx
Binomial
Let 0 < p < 1, N = 1, 2,..., then the function
N=6
is called the binomial density function.
p = 0.25
 is the parameter of the distribution.
We say X follows a Poisson distribution
with parameter  (average rate)
In our book
k

b is the parameter of the distribution
bk
b b
f X ( x)  e 
 (x  k)   e
 (x  k)
(average rate)
k
!
k
!
k  0
k  0
b


bk
FX ( x)  e 
u( x  k )
k
!
k  0
b
  1.8 birth/houre
  1.8 birth/houre
an infinite number of probabilities to calculate
What is the probability of observing no birth (X=0) births in a given hour at the hospital?
P ( X  4)  e
1.8
 1.80 
1.8

e


 0! 
 0.165
  1.8 birth/houre
Then Y is Poisson with   3.6
The Gaussian Random Variable
f X (x ) 
1
2 x2
e
 ( x  aX ) 2 2 x2
X
N (a X ,  X2 )
Which is tabulated
 x  aX 
FX ( x)  F 


x


Uniform distribution
 1
, a xb

fX  x  b  a
0
, elsewhere
Exponential distribution
 1  x  a  / b
,x  a
 e
fX  x  b
0
,xa
The Rayleigh distribution
2
 ( x  a )2
 ( x  a )e
f X ( x)   b
0
for real constants    a   and b  0
1  e  ( x  a )
FX ( x)  
0
2
b
b
x  a
x  a
x  a
x  a
Conditional Distribution and Density Functions
P(A B)
P(A|B) =
P(B)
Conditional Distribution
Let X be a random variable and define the event A = X  x
we define the conditional distribution function FX (x|B)
{X  x} B
A
FX (x|B) = P{X  x|B} =
P{X  x B}
P(B)
Properties of Conditional Distribution
(1) FX (|B) = 0
(2) FX (|B) = 1
(3) 0  FX (x|B)  1
(4)
FX (x1|B)  FX (x 2 |B)
if
x1 < x 2
(5) P x1 < X  x 2 |B = FX (x 2 |B)  FX (x1|B)
(6)
FX (x + |B) = FX (x|B)
Conditional Density Functions
f X ( x | B) 
dFX ( x | B )
dx
Properties of Conditional Density
(1)
(2)
(3)
(4)
f X (x|B)  0


f (x|B) dx = 1
 X
FX (x|B) =

x
f (ξ|B)dξ
 X
P x1 < X  x 2 |B =

x2
x1
f X (x|B)dx
 FX (x)

FX (x|X  b) =  FX (b)
1

x<b
b  x
 FX (x|X  b)  FX (x)
The conditional density function derives from the derivative
dFX (x|X  b)
f X (x|X  b) =
dx
Similarly for the conditional density function
 f X (x|X  b)  f X (x)
 f X (x)
 F (b) =
=  X

0
f X (x)

b
x<b
f (x)dx
 X
x  b
Example 8 Let X be a random variable with an exponential
probability density function given as
x
 e
f X (x )  
 0
x 0
x 0
Find the probability P( X < 1 | X ≤ 2 )
Since











2
f X (x )
f X (x )dx


f X (x | X  2) 
0
x 2

x 2









e x
1e 2
x 2
0
x 2
f X (x | X  2)
f X (x )
x
e
P (X  1| X  2)   f X (x | X  2)dx  
dx
2
0
0 1e
1
1
1


0
e x dx
1e 2
1
1

e

2  0.7310
1e
Ch3 Operations on one random
variable-Expectation
Expected value of a random variable
E X = X =
E X = X =
 x P(x )
i
x i SX



i
xf X (x)dx
if X is discrete values
if X is continuous value with Probability density
Expected value of a Function of a random variable
E  g(X)  =
N
 g(x )P(x )
i
i
i=1
E  g(x)  =



g(x)f X (x)dx
Conditional Expectation
We define the conditional density function for a given event
B = { X  b}
 f X (x)
 b
f X (x|X  b) =   f X (x)dx


0

x<b
x  b
we now define the conditional expectation in similar manner
E  X|B =



xf X (x|B)dx =

b

xf X (x|B)dx +


b
xf X (x|B)dx
xb
x<b
b
=

b

x
f X (x)

b

f X (x)dx
constant = FX (b)
dx +


b
x 0 dx
0
=



b
xf X (x)dx

f X (x)dx
constant = FX (b)
Moments
The expected value defined previously as
E X = X =



xf X (x)dx
we can define the n th moment (about the origin) m n as

m n = E  X  =
n
m1 = E  X  =
1





x n f X (x)dx
xf X (x)dx = X The expected value of X
we define the n th moment (about the mean) Central Moments
μ n = E (X  X)  =
n



(x  X) n f X (x)dx
μ n = E (X  X)  =
n
μ 0 = E (X  X)  =
0
E1 =1






(x  X) n f X (x)dx
(X  X)0f X (x)dx = 1 The area of the function f X (x)

 fX (x)dx = 1
μ1 = E (X  X)1  = E[X]  E[X] = X  X = 0
were we have used the fact that E[ a ] = a
constant
Moments
Moments about the mean
called central moments
Moments about the origin
N
mn  E  X n  =  x ni P(X = x i )
i=1
mn = E  X  =
n



μ n = E (X  X) n 
N
=
x
i
i=1
n
x f X (x)dx
μ n = E (X  X) n 
m1  E  X  = X
=
Thus the variance is given by
σ = μ 2 = E (X  X)  =
2
x
 X  P(X = x i )
n
2



(x  X) 2f X (x)dx
σ 2x = μ 2 = E (X  X) 2  =E  X 2   X 2 = m 2  m12



(x  X) n f X (x)dx
Thus the variance is given by
σ = μ 2 = E (X  X)  =
2
x
2



(x  X) 2 f X (x)dx
= E  X 2   X 2 = m 2  m12
Properties of the variance
(1) σ c2  0
c is a constant
(2) σ 2x + c  σ 2x
The variance does not change by shifting
(3)
2
σ cx
 c 2 σ 2x
3.3 Function that Give moments
d n Φ X (ω)
mn = (  j )
dω n ω = 0
n
f X ( x)  X ( )  Fourier Transform  f X ( x) 
X () 

 e
X ()
j X
f X ( x)dx
 f X ( x)
Inverse
Fourier
Transform
=
1 
ΦX (ω)e- j X dω

2π 
Example Let X be a random variable with an exponential
probability density function given as
x
x 0
 e
f X (x )  
 0
m1  E[ X ] 


x 0
xf X ( x)dx 

0
x
xe dx
=1
Now let us find the 1st moment (expected value) using the characteristic function
X () 


x
e j X e dx
= Fourier Transform{e
x
1
 1 
=
}  = 

1  j
1  j  
m1  ( j) d  X ( )
d
 0
d  ( )  d  1 
d X
d 1  j 

j
(1  j )
2
 m1  ( j)


  j2 
j
 

2
2  =1
 (1  j )  0  (1  j (0))  0
3.4 Transformations of A Random Variable
OR
dx
f ( y )  f ( x)
Y
X
dy
x T 1 ( y )
x T 1 ( y )
Nonmonotonic Transformations of a Continuous Random Variable
fY ( y ) 

n
f X (x n )
dT(x)
dx x = x n
Ch4: Multiple Random Variables
Joint Distribution and its Properties
6
6
FX,Y (x,y) = P(X  x, Y  y) =  P(x n ,y m ) u(x  x m ) u(y  y m )
n=1 m=1
6
6
f X,Y (x,y) =  P(x n ,ym ) δ(x  x m ) δ(y  ym )
n=1 m=1
y x
FX,Y (x,y) =
 f
X,Y
(ξ1 ,ξ 2 )dξ1dξ 2
 
f X,Y (x,y) =
 2 FX,Y (x,y)
xy
Properties of the joint distribution
(1) FX,Y (  ,  ) = 0
FX,Y (  , y) = 0
FX,Y (x,  ) = 0
(2)
FXY (, ) = 1
(3)
0  FXY (x,y)  1
(4)
FX (x,y) is a nondecreasing function of both x and y
(5) Px1 < X  x 2 ,y1 < Y  y 2  = FX,Y (x 2 ,y 2 )  FX,Y (x1,y 2 )  FX,Y (x 2 ,y1 ) + FX,Y (x1 , y1 )  0
(6) FX,Y (x,) = FX (x)
FX,Y (, y) = FY (y)
Marginal Distribution Functions
FX,Y (x,) = FX (x)
FX,Y (, y) = FY (y)
Joint Density and its Properties
f X,Y (x,y) =
 2 FX,Y (x,y)
xy
y x
FX,Y (x,y) =
 f
 
X,Y
(ξ1 ,ξ 2 )dξ1dξ 2
Properties of the Joint Density
(1)
(2)
(3)
(4)
f X,Y (x,y)  0

 

  f X,Y (x,y)d x d y = 1
y
 
F (x) =   f
F (y) =   f
FX,Y (x,y) =

  X,Y

y
Y
(5)
(6)
f
  X,Y
x
X
x
  X,Y
Properties (1) and (2) may be used as
sufficient test to determine if some
function can be a valid density function
(ξ1 ,ξ 2 )dξ1dξ 2
(ξ1 ,ξ 2 )dξ 2 dξ1
(ξ1 ,ξ 2 )dξ1dξ 2
P x1 < X  x 2 ,y1 < Y  y 2  =

(y) = 
f X (x) =
fY

f
 X,Y

f
 X,Y
Marginal Distribution
y2
x2
y1
x1
 
f X,Y (x,y) d x d y
(x,y) dy
(x,y) dx
Marginal Densities
Conditional Distribution and Density
The conditional distribution function of a random variable X given some event B was
defined as
FX  x|B =P X  x|B =
PX  x
P  B
B
were P  B  0
The corresponding conditional density function was defined through the derivative
f X  x|B  =
dFX  x|B 
dx
(1) X and Y are Discrete
N
 P(x ,y
i
K
)u(x  x i )
i=1
FX (x|Y= y K ) =
P(y K )

N
P(x i ,y K )
u(x  x i )

i = 1 P(y K )
dFX (x|Y= y K ) N P(x i ,y K )
f X (x|Y= y K ) =

δ(x  x i )
dx
i = 1 P(y K )
(2) X and Y are Continuous

F (x Y = y) 
x
f
 ξ1 ,y  dξ1
fY  y 
 X,Y
X
For every y such that
dFX (Y = y) f X,Y  x,y 
f X  x|Y = y  =

dx
fY  y 
f Y (y)  0
STATICAL INDEPENDENCE
FXiX j (x i ,x j )  FXi (x i )FX j (x j )
FXiX jXk (x i ,x j , x k )  FXi (x i )FX j (x j )FXk (x k )
FX1X2
XN
(x1 ,x 2 ,
x N )  FX1 (x1 )FX2 (x 2 )
FX N (x N )
f XiX j (x i ,x j )  f Xi (x i )f X j (x j )
f XiX jXk (x i ,x j , x k )  f Xi (x i )f X j (x j )f Xk (x k )
f X1X2
XN
(x1 ,x 2 ,
x N )  f X1 (x1 )f X2 (x 2 )
f X N (x N )
We seek the distribution or density of W=X+Y
FW  w  = P W  w = P X+Y  w
 FW  w  =
fW  w  =

 
wy
f
 x  X,Y
(x,y)dxd y
dFW  w 
dw
If X and are independent  f X,Y (x,y)  f X (x)f Y (y)
 FW  w  =



f Y (y) 
wy
x 
f X (x) dx dy
using Leibnizerule we get
fW  w  =
dFW  w 
dw

=
 f Y (y)f X (w  x)dy = f
Convolution Integral
Y
(y)  f X (x)
Operations on Multiple Random Variables
   g(x,y)f (x,y)dxdy
X,Y
  
g = E  g(X,Y)  = 
  g(x i ,y k )PX,Y (x i ,y k )
 i k
Continuous
Discrete
Joint Moment about the Origin
m nk = E  X Y  =
n
k

 

 
x n y k f X,Y (x,y)dxdy
m n0 = E[X n ] the n th moment m n of the one random variable X
m 0k = E[Y k ] the k th moment m k of the one random variable Y
correlation
R XY = m11 = E[XY] =


  xyf X,Y (x,y)dxdy

Continuous

=   x n ym P(x n ,ym )
Discrete
n=  n= 
R XY =
E[X]E[Y] uncorrelated


 0
Orthogonal

The variance
σ2X  μ 20
σ2Y  μ02
=
E (X

=
E (Y


X)2  =
E[X ]  X
2

Y)2  =
E[Y ]  Y
2




2
covariance
CXY = μ11 = E (X  X)(Y  Y) = R XY  E[X]E[Y]


0



E[X]E[Y]

if X and Y are uncorrelated
if X and Y are orthogonal
Independence  Uncorrelation
The converse is not true in general except for Gaussian
2
covariance
CXY = μ11 = E (X  X)(Y  Y) = R XY  E[X]E[Y]



0



E[X]E[Y]
The correlation coefficient
ρ=
CXY
σXσY
1  ρ  1
if X and Y are uncorrelated
if X and Y are orthogonal
The joint moments can be found from the joint characteristic function
m nk = (  j) n+k
 n+k Φ X,Y (ω1 ,ω2 )
ω1n ωk2
f XY (x, y)  Φ X,Y (ω1 ,ω2 )
ω1 =0, ω2 0
2D Fourier Transform with reversal of sign
Yi = Ti (X1 ,X 2 ,...,X N )
i = 1,2, ..., N
X j = Tj1 (Y1 ,Y2 ,...,YN )
j = 1,2, ..., N
f Y1 ,Y2 ,...,YN (y1 ,...,y N )  f X1 ,X2 ,...,XN (x1 = T11 ,...,x N = TN1 ) J
T11
Y1
T11
YN
TN1
Y1
TN1
YN
J=
Random Process and its Applications to linear systems
Distribution and Density of Random Processes
For a particular time t1 , X  t1  is a random variable
 X  t1  R.V has a distribution FX  t  (x) , and a density f X  t  (x)
1
 FX  t  (x1 )  P  X  t1   x1
1
1
f X  t  (x1 ) =
1
dFX  t  (x1 )
1
dx1
Wide - Sense Stationary  WSS 
A process that satisfies the followings :
E  X (t )   X = constant
E  X (t ) X (t   )   RXX ( )
The time average of a quantity is defined as
1 T
A  = lim
 dt


T   2T  T
Autocorrelation Function and Its Properties
R XX (t, t + τ) = E  X(t)X(t + τ) 
Random Function
X(t)
Random Function
h(t)
R XX (τ)
Y(t)=X(t)*h(t)
Linear System
None random Deterministic Function
R YY (τ)
None random Deterministic Function
Y = XH(0)
X
R YY (τ) = R XX (τ)
R XX (τ)
 h(  τ)  h(τ)
SYY (f ) = S XX (f ) 
S XX (f )
H (f )  H (f ) = S XX (f ) H ( f )
*
H( f )
Total power of the Input
Total power of the Output

2
E[X (t )]=R XX (0) =
 S XX ( f )df

2
E[Y 2 (t )] = RYY (0) =



SYY ( f )df =



2
S XX ( f ) H ( f ) df
2