Near-Optimal Voice-Data Integration over Medium and High Capacity Wireless TDMA Channels. A new Medium Access Control for mobile wireless communications is presented. Explore the performance of the protocol when integrating voice and data traffic over two wireless channels: a) Medium capacity Outdoor microcellurar environment. b) High capacity Indoor microcellurar environment. Uplink channel Mobiles to base station-MAC scheme is required in order to resolve the source terminals contetion. Downlink channel The Base Station is the sole transmitter using Time Division Multiple Access. Data message arrivals: are assumed to occur according to a Poisson process. Vary in length according to a geometric distribution. Frame Voice Data R R R v v d Information Information . R d . . ER . R r . r v . v d . d n 1 . Voice request mini-slots . R . . . v . . . ER r 1 . n . Data request mini-slots . Three types of intervals. Voice Request intervals. Data Request intervals. Information intervals. Request intervals are subdivided into minislots wich accommodate exactly one request packet. ER slots. A standard request bandwidth of 2-3% is usually sufficient for optimum system performance. TWO NOVEL IDEAS Certain request slots can be shared by voice and data terminals. Dynamic low - load mechanism. Voice and data terminals with packets, and no reservetion, contend for channel resources using a random access protocol. Upon succesfully transmitting a request packet the terminal waits until the end of the corresponding request interval to learn of it's reservation slot (slots). LOW-VOICE LOAD MECHANISM Frame voice occupancy defined as the ratio of: (Voice reservations + voice requests) total number of information slots in the frame This ratio is calculated by the B.S immediately after the end of the voice request slots. If ratio > 50% then 1 slot/frame for data. If ratio < 50% then 8 slots/frame for data. - Average data message length =8 packets. This allocation policy is temporary and only the first allocated slot is guaranteed to the data terminals in subsequent frames. TRANSMISSION PROTOCOLS Data terminals Two-cell stack blocked access collision resolution algorithm. Voice Terminals Two-cell stack reservation random access algorithm. Pre-spliting. Frame structure for the 1.8 Mbps channel. 1 Slot 49 Slots R v 1 2 a n d . . 4 . . 9 . . R d 1 2 3 4 5 6 6 request minislots Frame structure for the 9.045 Mbps channel. 4 slots 83 slots 1 slot 83 slots 1 slot 84 slots Rv and Rd 1 R . 8 d 8 . 3 . 1 2 3 4 4 request minislots 4 R . 1 d 1 . 2 . 6 6 . 5 6 7 . 0 . Experimental System Parameters Design Parameters Medium High Capacity Capaci Channel ty Chann el Channel Rate (Mbps) 1.8 9.045 32 32 12 12 50 256 240 46.875 1 6 Speech Codec Rate (Kbps) Frame Duration (ms) Slots per Frame Slot duration (μs) Request frame slots per Minislots per request slot 6 4 Packet size (bytes) 53 ( header) 5 53 ( 5 header ) Voice delay limit (ms) Mean 24 1.41 1.41 1.78 1.78 0.01 0.01 24 125 200 200 talkspurt duration (s) Mean silence duration (s) Maximum voice dropping probability Low 24 frame voice occupancy limit (slots) Average delay limit for data message Transmission (ms) RESULTS 1) VDl-MCC (Voice Data Integration in a Medium Capacity Channel) Conceptual comparison with IPRMA. Use of PRMA algorithm to resolve voice terminal contetion. The absence of request slots. Does not provide absolute priority to voice traffic over data traffic. The static nature of it's low load mechanism. - k idle slots -speech priority of M slots - A data user is allowed to reserve up k-M-1 slots. RRA protocol Differences 1. RRA uses two request slots, the second of which is used for data requests. 2.RRA does not use ER slots. 3. In RRA, the BS allocates resources at the end of each channel frame and not at the end of the request slot of the current channel frame. 4. In RRA the BS preempts data reservations to service voice requests. 5. ln RRA data terminals may acquire only one information slot per frame. RESULT COMPARISON OF VDI-MCC and RRA A) Results for voice traffic only M M T P P e h e d a r r ( r n o c P t o u e r e p A g n o r c h t t m ( c p a o i p e u g c n e s t e o a r s ( l l c D p o s e e a f A N C ) n l c L t a k o ) y e s t s ( s l m / e s f s ) r s a m T e a ) l k s p u r t s V 0 2 D 1 . 1 4 8 I 0 9 . 3 6 - 0 3 3 . % 0 1 8 M C C 2 0 0 . . 0 0 5 . 3 4 1 9 R 0 0 3 R 9 . 0 4 8 A 7 9 . 2 2 1 8 . % 7 4 4 9 0 0 . . 0 0 5 . 3 4 0 7 Immediate slot allocation ER slots. 8 RESULT COMPARISON OF VDI-MCC and RRA B) Results for data traffic only Data access Delay (DaD) is defined as the time period from the instant a data terminal generates a message, until it completes the transmission of the first packet of its message. Data message delay (DmD) is defined as the time period from the instant a data terminal generates a message, until it completes the transmission of the last packet of its message . Due to: The immediate allocation of recources. The use of ER slots. The possible allocation of more than 1 slot per frame to the data terminals in low voice load situations. RESULT COMPARISON OF VDI-MCC and RRA 800,00 Delay(ms) 600,00 400,00 RRA (DaD) 200,00 RRA(DmD) VDI-MCC (DaD) 5,87 5,83 5,80 5,75 5,30 3,00 2,55 2,00 1,00 0,40 0,00 0,00 VDI-MCC (DmD) λ(m essages/fram e) Steady state mean data delays in the absence of voice traffic COMPARISON OF RESULTS BETWEEN VDI-MCC and RRA C) Results for Voice-Data Integrated Access. 300,00 Delay(ms) 250,00 200,00 150,00 100,00 RRA (DaD) 50,00 RRA (DmD) 1,3 95,3 1,1 92,0 0,9 88,7 0,7 85,3 0,5 82,0 0,3 78,7 0,1 75,3 0,00 λ (m essages/fram e) Steady state mean data delays: N=80. VDI-MCC (DaD) VDI-MCC (DmD) 600,00 Delay (ms) 500,00 400,00 300,00 200,00 RRA (DaD) 100,00 RRA (DmD) 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,00 λ (m essages/fram e) VDI-MCC (DaD) VDI-MCC (DmD) Steady state mean data delays: N=90. For Vts=80 RRA achieves a channel throughput of 90.3% (λ=1) For Vts=90 RRA achieves a channel throughput of 87.9% (λ=0.3) For Vts=80 VDI-MCC achieves a channel throughput of 91.8% (λ=1.2) For Vts=90 VDI-MCC achieves a channel throughput of 91% (λ=0.6) λ (messages/ Max. Voice Capacity for Pdrop<1% frame) VDI-MCC 0.1 100 0.2 99 0.5 99 0.7 99 0.8 98 1.0 98 1.2 98 1.3 98 First QoS comparison of VDI-MCC and RRA. λ Max. Voice Capacity for Pdrop<1% and DmD<200 ms (messages/fr ame) VDI-MCC Cap. RRA Chan. Pdrop Voice packetaccess DmD (ms) Cap. Chan. Throu. Pdrop (%) Voice packet access delay (ms) DmD Throu. (%) delay (ms) 0.1 100 0.909 0.973 23.14 180.6 95 0.886 0.623 26.69 197.4 0.2 98 0.912 0.761 19.62 196.7 92 0.877 0.361 22.99 191.3 0.3 96 0.909 0.526 15.93 183.1 91 0.886 0.280 21.84 194.6 0.4 94 0.910 0.417 14.22 194.7 89 0.885 0.187 20.49 189.4 0.5 92 0.909 0.282 11.94 177.9 88 0.892 0.153 20.04 199.4 0.6 91 0.918 0.236 11.22 199.2 86 0.891 0.102 19.28 193.3 0.7 89 0.917 0.176 10.05 187.3 85 0.899 0.084 19.03 198.7 0.8 87 0.915 0.105 8.64 165.4 83 0.898 0.063 18.69 192.2 0.9 86 0.922 0.082 8.36 186.1 82 0.905 0.048 18.48 198.4 1.0 85 0.928 0.077 7.98 192.4 81 0.912 0.042 18.38 199.5 1.1 83 0.926 0.049 7.29 182.2 79 0.911 0.039 18.28 190.4 1.2 81 0.927 0.032 6.81 175.3 78 0.918 0.036 18.24 197.3 1.3 80 0.933 0.031 6.71 195.6 76 0.916 0.032 18.14 188.3 Second QoS comparison of VDI-MCC and RRA. (ms) VDI-HCC permanent request bandwidth = 6 slots Use of ER slots High channel capacity. Leads VDI - HCC to achieve a near-optimal multiplexing gain. voice traffic maximum voice capacity - 556 terminals. voice multiplexing gain 556/256=2.17 The optimal multiplexing gain is (1 .41+1 .78)/1 .41=2.26 voice packet throughput 243.5 packets/frame or 97 .4% Voice Packet Dropping Prob. (%) 1.200 1.000 0.800 0.600 0.400 0.200 0.000 515 517 519 521 523 525 527 529 531 533 535 537 539 541 543 545 547 549 551 553 555 556 557 N, Active Voice Terminals Steady state voice Pdrop versus the number of active voice terminals. Mean Voice Packet Delay (ms) 30.00 25.00 20.00 15.00 10.00 5.00 0.00 515 517 519 521 523 525 527 529 531 533 535 537 539 541 543 545 547 549 551 553 555 556 557 N, Active Voice Terminals Steady state mean voice access delay versus the number of active voice terminals. 1,000 0,800 0,600 λ=0.4 0,400 λ=1 0,200 λ=2 553 551 547 543 539 535 531 527 523 519 0,000 515 Voice Packet Dropping Probability (%) 1,200 λ=9 N, Active Voice Term inals Pdrop for different data message arrival rates. Delay(ms) 400,00 300,00 200,00 100,00 Data Packet Access Delay 2,600 99,4 2,200 98,1 1,800 96,8 1,400 95,5 1,000 94,3 0,600 93,0 0,200 91,7 0,00 Data Message Delay λ(m essages/fram e), channel throughput(%) Steady state mean data delays with N=515 active voice terminals. λ (messages/frame) Max. Voice Capacity for Pdrop<1% and DmD<200 ms VDI-HCC Capacity Channel Pdrop (%) DmD (ms) Throughput 0.2 544 0.963 0.469 195.9 0.4 538 0.960 0.292 198.6 0.6 535 0.961 0.242 189.3 0.8 530 0.962 0.184 192.4 1.0 525 0.960 0.139 187.8 1.5 520 0.966 0.098 193.0 2.0 511 0.966 0.035 182.3 2.5 505 0.972 0.029 187.4 3.0 500 0.977 0.021 188.3 4.0 486 0.982 0.015 199.6 5.0 469 0.985 0.012 196.5 6.0 448 0.981 0.007 189.9 7.0 427 0.980 0.006 193.3 8.0 409 0.979 0.005 198.2 9.0 391 0.979 0.003 193.6 10.0 372 0.977 0.003 187.2 Performance of VDI-HCC when fulfilling both the QoS requirements.
© Copyright 2026 Paperzz