CEPT ECC SE19(14)04 Electronic Communications Committee Project Team SE19 Web-Meeting, 28th November 2013 Source: Orange Subject: SE19 WI28: Coexistence study between FS and FSS. Group membership required to read? (Y/N): N Summary: This document presents a correction to the study assessing compatibility between fixed service with narrow channels in the L6 band and FSS in the band 5925 MHz – 6425 MHz. Proposal: SE19 is invited to consider this contribution for potential inclusion in ECC draft report (to complete or replace the previous study on this matter). Background: at last SE19 meeting, it was noticed that some calculations provided by Orange on interferences from FS to FSS had to be corrected. Methodology The “ΔT/T” approach derived from ECC Report 68 The study adopted the ΔT/T approach described in Appendix 8 of the ITU Radio Regulations in order to assess the impact of interference from a large number of FS devices in the field-of-view of a satellite antenna beam. Although not directly suitable for use in the case of inter-service sharing, it does provide a very simple method of analysing the impact without much knowledge of the characteristics of the carriers used on the satellite network requiring protection. In this technique, the interference from the FS into the satellite receivers is treated as an increase in thermal noise in the wanted FSS network and hence is converted to a noise temperature (by considering the interference power per Hz) and compared with tolerable percentage increases in noise temperature. This approach has the advantage that very few satellite parameters are required to be known and a detailed link budget for every type of carrier (especially those most sensitive to interference) is not required for the satellite network requiring protection Recommendation ITU-R S.1432 deals with the allowable error performance degradations to the FSS below 30 GHz. For sharing studies with systems having co-primary status, a 6% of the aggregate interference budget is recommended. The study takes only into account the uplink case. The limitation of increase of equivalent noise temperature is expressed by the following relationship: (∆Tsat)/Tsat < Y (%) where, ΔTsat : apparent increase in the receiving system noise temperature at the satellite, due to an interfering emission (K); Tsat: the receiving system noise temperature at the satellite referred to the output of the receiving antenna of the satellite (K) Y : noise increase allowed (6% in case of FS). In the case under consideration here, ΔTsat is the contribution of aggregate emissions from FS P-P devices at the input of satellite receiver. Assuming that FS P-P interference can be treated similarly to thermal noise, the following relationship can be assumed (linear scale, not dB): ∆Tsat=(EIRP_FS∙Gsat)/(k∙l) K where E.I.R.P_FS : the aggregate E.I.R.P spectral density of the FS P-P transmitters in the satellite beam and in the direction of the satellite (W*Hz-1); Gsat: the gain of receiving antenna of the satellite in the direction of FS interferer (linear ratio, relative to isotropic); k : Boltzmann’s constant (1.38x10-23 J.K-1); l : uplink Free Space path loss (linear power ratio). Note that this could also include gaseous attenuation due to absorption by water vapour and oxygen molecules; Combining above equations: EIRP_FS ≤ X∙(Gsat/Tsat)-1∙k∙l W.Hz-1 where, X: noise increase allowed (expressed as a fraction of 1, e.g. 0.06 for 6%). Consideration on the contributions of the different European countries to interferences to satellites Just as in the ECC report 68, we have considered the different European countries with their population. The relative population compared to the total population gives the percentage of interferences coming from this country (if we consider that the FS number is proportional to the population). We consider that all the FS are located in one location of the country (actually the capital of the country). From this location, we derive the elevation between the FS and the satellite and from this elevation we deduce the antenna gain according to ITU-R F.1245-2. Horizontal discrimination : We have no knowledge concerning horizontal orientation of the FS’s antennas in relation to the direction of the victim satellite. 2 We can assume that all directions of FS are equally probable. We should consider only FS which give substantial contribution to the aggregated level of interferences to the victim satellite. Indeed the FS antennas have very sharpened antenna patterns. So we take into account only FS’s antennas that are pointed in the direction to the victim satellite (it means in an interval of angles where we consider that the transmitted power may interfere the satellite receiver). We consider that relative attenuation of the FS antenna radiation pattern at the border of this interval should be -10 dB. Based on the antenna radiation pattern present in ITU-R F.1245-2 we found that this -10 dB level is achieved for the angle of 2,65°. Based on these assumptions the number of FS’s that are really interfering satellites may be approximated by the ratio of 2*2,65°=5,3° to 360°. This ratio is equal to 0,0147 (which gives 18,3 dB in logarithm scale). The figure below gives the antenna pattern from ITU-R F.1245-2 on which is based the horizontal discrimination assumption : ATPC (Automatic Transmitted Power Control) In our calculations, we consider the Automatic Transmitted Power Control. The reduction of power taken into account for this ATPC is here of 9 dB. The ATPC is for example recommended for fixed services in Recommendation ITU-R F.1247-1 : “Technical and operational characteristics of systems in the fixed service to facilitate sharing with the space research, space operation and Earth exploration-satellite services operating in the bands 2 025-2 110 MHz and 2 200-2 290 MHz” Here is an excerpt of this recommendation : 3 “[…] recommends 1 that FS stations in the bands 2 025-2 110 MHz and 2 200-2 290 MHz, where practicable, use: 1.1 automatic transmit-power control (ATPC) such that the mean power is a minimum 10 dB below the maximum transmitter power; […] ” Of course, this recommendation is for another frequency band than the 6 GHz band but anyway it shows that ATPC can be used for this kind of sharing between FS and satellite receivers. Input parameters used in calculations Input parameters values f [GHz] d [km] Y=ΔT/T [%] B [MHz] Tx power [dBW] ATPC [dB] Feeder loss [dB] Tx antenna gain [dBi] FS antenna Horizontal discrimination [dB] 5925 38000 6 0,5 -3 9 2 36 -18,3 Satellite Satellite Satellite orbital Maximum Receiving position Receive System Gain, Noise Gsat (dBi) Temperature Tsat (K) 359o East 32.8 700 66o East 34.7 700 53o East 26.5 1200 3o East 34 773 Results In the next table, we give the number of active devices transmitting simultaneously based on the methodology described above. For each satellite, we can see the number of allowed active FS P-P ranges from about 15000 to 347000. These figures are very high compared to the order of magnitude for these FS figures which are about 3000 all over Europe. Therefore it seems that there wouldn’t be harmful interferences from FS to satellite receivers according to these calculations especially if these FS would use the ATPC. Note that a ATPC of 9 dB may be a too high value especially if we consider a lower output transmit power for the FS (e.g. -7 dBW). 4 Satellite position orbital Satellite Receiving System Figure of Merit Gsat/Tsat Max allowable aggregate EIRP spectral density and EIRP from all FS P-P devices in one channel for ΔTsat/Tsat=6% Number N of active FS P-P devices (transmitting simultaneously in one channel) dB/K dBW/Hz dBW E 4,35 -45,7 11,32 94 041 E 6,25 -47,6 9,42 15 026 E -4,29 -37,0 19,96 347 024 E 5,12 -46,4 10,55 83 317 359o 66o 53o 3o The next figure gives the number of FS devices versus the Tx output power. For a 2 dBW power, the minimum number of FS would be 4752. This number is higher than the number of FS used currently used over Europe in the L band (about 3000). This means that if we set a -7 dBW output power, the ATPC would even not be necessary to be used (because for 2 dBW, the equivalent power is 2-9=-7 dBW, where 9 is ATPC). Therefore, according to this figure, if we consider a -3 dBW output power, the ATPC could be 4 dB. The next figure gives the number of FS devices versus FS antenna horizontal discrimination. It shows that at least for -12 dB antenna discrimination, the number of FS devices is still very high (at least higher than 3000 in the worst case). It would mean that for an angle aperture of 11.3 degrees could be used in the calculations instead of 2.25 degrees. In this case, we would have 360/22.6=15.9 which converted in dB would give 12 dB (to be compared to 18.3 dB). 5 Annex : detail of the calculations In the table below, we give the location of the capital of each European country. Then we give the contribution of each country to ∆T/T proportionally to the population of each country. Latitude Longitude (⁰) (⁰) Austria (Vienna) Belgium (Brussels) Bulgaria (Sofia) Czech Republic (Prague) Denmark (Copenhagen) Estonia (Tallin) Finland (Helsinki) France (Paris) Germany (Frankfurt) Greece (Athens) Population Contribution to 6% 48,2 16,4 millions 8,2 50,8 4,4 10,3 1,65 0,099 42,7 23,3 7,7 1,23 0,074 50,1 14,4 10,3 1,65 0,099 55,7 12,6 5,4 0,86 0,052 59,5 24,8 1,4 0,22 0,013 60,0 25,0 5,2 0,83 0,050 48,5 50,1 2,4 8,7 59,8 83,0 9,55 13,26 0,573 0,796 38,0 23,7 10,6 1,69 0,102 6 % 1,31 0,079 Hungary (Budapest) Ireland (Dublin) Israel ( ) Italy (Rome) Latvia (Riga) Lithuana (Vilnius) Luxmebourg Netherlands (Amsterdam) Norway (Oslo) Poland (Warsaw) Portugal (Lisbon) Romania (Bucharest) Slovakia (Bratislava) Spain (Madrid) Sweden (Stockholm) Switzerland (Zurich) Turkey (Ankara) UK (London) Ukraine (Kijev) Others 47,5 19,1 10,1 1,61 0,097 53,0 -6,3 3,9 0,62 0,037 32,1 41,9 56,9 54,7 34,8 12,1 24,1 25,3 6,0 58,0 2,4 3,6 0,96 9,27 0,38 0,58 0,058 0,556 0,023 0,035 49,6 52,4 6,1 4,9 0,4 16,0 0,06 2,56 0,004 0,153 59,9 10,8 4,5 0,72 0,043 52,3 21,0 39,0 6,23 0,374 38,7 -9,1 10,1 1,61 0,097 44,4 26,1 22,3 3,56 0,214 48,2 17,1 5,4 0,86 0,052 40,3 -3,4 40,0 6,39 0,383 59,3 18,1 8,9 1,42 0,085 47,4 8,5 7,3 1,17 0,070 39,8 31,9 67,3 10,75 0,645 51,5 50,4 0,0 30,6 59,8 48,0 9,55 7,67 0,573 0,460 11,0 1,76 0,105 625,9 100,0 6,0 TOTAL ΔT/T Based on the calculation method described above, we can find the number N of acceptable fixed devices for each of the 4 considered satellites in the 4 different tables below. At first, we derive the number of acceptable number of FS per country and at the end we add the contributions of each country in order to find the total number of acceptable FS over the whole Europe. Calculation example : We first calculate the EIRP density allowed at satellite receiver : EIRP density=( ΔT/T)*k*L*(Gsat/Tsat)-1 EIRP density=10*Log(ΔT/T)+10*Log(k)+10*Log(L)-Gsat(dBi)+10*Log(Tsat) EIRP density (dBW/Hz)=10*Log(0.079/100)+10*Log(1.38.1023)+32.45+20*Log(38000)+20*Log(5925)-34+10*Log(773) 7 0,079 is the contribution to 6 % from Austria (see table above) Then we calculate the transmitted power of the FS to the satellite receiver EIRP_channel=Tx power-ATPC+FS antenna gain-feeder losses EIRP_channel (dBW)=-3-9-6.1-2=-20.1 dBW then we deduce the number of allowed FS (N_linear) by dividing the EIRP density allowed at satellite receiver by the power density of a FS (B being the bandwidth of this FS) : N_linear=[EIRP density/(EIRP_channel/B)]*Horizontal_antenna discrimination «Horizontal_antenna discrimination» being in linear : 360/5.3=68 We multiply the calculated number by Horizontal_antenna discrimination=360/5.3 to take into account the fact that only a fraction of the total number of FS will indeed interfere the satellite receiver due the horizontal discrimination of FS antennas. Finally we do this calculation for each country and at the end we add the numbers of FS for each country and we have the total number of allowed FS. We do the same kind of calculation for each satellite. Satellite D 3E EIRP density El. Angle dBW/Hz -65,3 -64,3 -65,5 -64,3 -67,1 -72,9 -67,2 -56,6 -55,2 -64,2 -64,4 -68,5 -66,6 -56,8 -70,6 -68,8 -78,4 -62,4 -67,9 -58,5 -64,4 -60,9 -67,1 [°] 33,2 31,8 36,6 31,6 25,9 20,0 19,4 34,3 32,3 40,9 33,2 28,8 39,4 40,7 22,6 24,5 33,1 30,1 21,7 27,9 43,4 33,9 33,0 FS Antenna Gain dBi -6,1 -5,6 -7,2 -5,6 -3,4 -0,6 -0,3 -6,5 -5,8 -8,4 -6,1 -4,6 -8,0 -8,3 -1,9 -2,8 -6,1 -5,0 -1,5 -4,2 -9,0 -6,3 -6,0 Eirp channel dBW -20,1 -19,6 -21,2 -19,6 -17,4 -14,6 -14,3 -20,5 -19,8 -22,4 -20,1 -18,6 -22,0 -22,3 -15,9 -16,8 -20,1 -19,0 -15,5 -18,2 -23,0 -20,3 -20,0 N 1029,9 1161,5 1234,0 1143,3 364,6 49,5 170,5 8148,1 9732,0 2242,5 1268,5 343,3 1156,1 12120,8 115,2 211,5 49,9 1572,7 195,2 3171,0 2478,4 2950,7 668,0 8 -58,4 -64,9 -65,8 -56,1 -56,6 -57,6 -64,0 -46,44 Satellite F 53E EIRP density dBW/Hz -55,9 -54,9 -56,1 -54,9 -57,7 -63,5 -57,8 -47,2 -45,8 -54,7 -55,0 -59,1 -57,2 -47,4 -61,2 -59,4 -69,0 -53,0 -58,5 -49,1 -55,0 -51,5 -57,7 -49,0 -55,5 -56,4 -46,7 -47,2 -48,2 -54,6 -37,03 43,0 21,4 35,3 35,2 31,0 26,6 31,4 -8,9 -1,3 -6,8 -6,7 -5,4 -3,7 -5,2 -22,9 -15,3 -20,8 -20,7 -19,4 -17,7 -19,2 9590,7 372,9 1068,8 9783,4 6327,4 3463,9 1133,3 83 317 El. Angle [°] 24,4 16,3 32,4 22,1 17,1 18,4 17,9 16,5 19,1 36,5 26,3 9,3 47,8 26,4 20,4 22,8 18,0 15,7 13,3 23,3 12,9 32,2 24,8 16,7 16,4 20,8 39,0 13,6 28,4 22,4 FS Antenna Gain dBi -2,8 1,6 -5,8 -1,7 1,1 0,3 0,6 1,5 -0,1 -7,1 -3,6 7,7 -10,1 -3,6 -0,8 -2,0 0,5 2,0 3,8 -2,3 4,2 -5,8 -2,9 1,4 1,6 -1,0 -7,9 3,6 -4,4 -1,1 EIRP channel dBW -16,8 -12,4 -19,8 -15,7 -12,9 -13,7 -13,4 -12,5 -14,1 -21,1 -17,6 -6,3 -24,1 -17,6 -14,8 -16,0 -13,5 -12,0 -10,2 -16,3 -9,8 -19,8 -16,9 -12,6 -12,4 -15,0 -21,9 -10,4 -18,4 -15,1 N 4163,0 1907,3 7942,8 4082,6 1127,2 351,0 1216,9 11416,5 22844,5 14728,5 6184,9 177,6 16362,2 35855,7 778,8 1542,6 94,9 2697,7 501,1 17643,1 1042,1 22649,8 2855,2 7869,9 1673,5 2486,6 110356,3 7041,6 35617,0 3812,9 347 024 9 Satellite H 66E EIRP density dBW/Hz -66,4 -65,4 -66,7 -65,4 -68,2 -74,1 -68,4 -57,8 -56,3 -65,3 -65,5 -69,6 -67,8 -57,9 -71,7 -70,0 -79,5 -63,5 -69,0 -59,6 -65,5 -62,1 -68,2 -59,5 -66,0 -66,9 -57,3 -57,8 -58,7 -65,1 -47,57 Satellite I 359E EIRP density El. Angle [°] 17,3 8,9 24,8 15,1 11,1 14,0 13,7 8,5 11,8 28,0 19,3 1,9 39,8 17,7 15,6 17,7 10,4 8,6 8,0 17,4 2,9 25,4 17,7 7,0 11,5 12,9 32,1 6,0 23,3 15,5 FS Antenna Gain dBi 1,0 8,2 -2,9 2,5 5,8 3,3 3,5 8,7 5,1 -4,3 -0,2 29,9 -8,1 0,7 2,1 0,7 6,5 8,6 9,3 0,9 20,4 -3,2 0,7 10,8 5,4 4,2 -5,7 12,5 -2,3 4,3 EIRP channel dBW -13,0 -5,8 -16,9 -11,5 -8,2 -10,7 -10,5 -5,3 -8,9 -18,3 -14,2 15,9 -22,1 -13,3 -11,9 -13,3 -7,5 -5,4 -4,7 -13,1 6,4 -17,2 -13,3 -3,2 -8,6 -9,8 -19,7 -1,5 -16,3 -9,7 N 155,6 37,1 359,5 139,1 33,8 15,6 55,1 192,0 605,1 670,3 251,9 0,1 913,9 1165,2 35,2 72,3 2,1 52,9 12,4 750,7 2,2 1105,2 108,5 79,0 60,8 66,5 5988,5 80,4 1917,2 97,6 15 026 El. Angle FS Antenna Gain EIRP channel N 10 dBW/Hz -64,5 -63,5 -64,8 -63,5 -66,3 -72,2 -66,5 -55,9 -54,4 -63,4 -63,6 -67,7 -65,9 -56,0 -69,8 -68,1 -77,6 -61,6 -67,1 -57,7 -63,6 -60,2 -66,3 -57,6 -64,1 -65,0 -55,4 -55,9 -56,8 -63,2 -45,67 [°] 32,2 31,6 34,9 30,8 25,4 19,0 18,5 34,2 31,8 39,0 32,0 29,2 36,4 39,8 21,5 23,3 32,7 29,9 21,3 26,8 44,4 32,1 32,0 43,4 20,7 34,8 32,9 31,1 25,0 30,6 dBi -5,8 -5,6 -6,6 -5,3 -3,2 0,0 0,2 -6,4 -5,6 -7,9 -5,7 -4,7 -7,1 -8,1 -1,4 -2,3 -5,9 -5,0 -1,3 -3,8 -9,3 -5,7 -5,7 -9,0 -1,0 -6,6 -6,0 -5,4 -3,0 -4,9 dBW -19,8 -19,6 -20,6 -19,3 -17,2 -14,0 -13,8 -20,4 -19,6 -21,9 -19,7 -18,7 -21,1 -22,1 -15,4 -16,3 -19,9 -19,0 -15,3 -17,8 -23,3 -19,7 -19,7 -23,0 -15,0 -20,6 -20,0 -19,4 -17,0 -18,9 1138,9 1364,9 1308,0 1280,1 414,5 52,0 180,7 9656,1 11173,3 2376,9 1381,1 424,2 1132,2 13682,7 121,4 222,7 57,7 1846,4 222,4 3423,3 3132,0 3073,3 738,4 11717,1 409,6 1231,1 9863,8 7614,5 3541,0 1260,1 94 041 11
© Copyright 2026 Paperzz