Digital Image Processing Chapter 3: Intensity Transformations and Spatial Filtering Background Spatial domain process g ( x, y ) T [ f ( x, y )] where f ( x, y ) is the input image, g ( x, y ) is the processed image, and T is an operator on f, defined over some neighborhood of ( x, y ) Neighborhood about a point Gray-level transformation function s T (r ) where r is the gray level of f ( x, y ) and s is the gray level of g ( x, y ) at any point ( x, y ) Contrast enhancement For example, a thresholding function Masks (filters, kernels, templates, windows) A small 2-D array in which the values of the mask coefficients determine the nature of the process Some Basic Gray Level Transformations Image negatives s L 1 r Enhance white or gray details Log transformations s c log( 1 r ) Compress the dynamic range of images with large variations in pixel values From the range 0-1.5 10 0 to 6.2 6 to the range Power-law transformations s cr or s c(r ) 1 maps a narrow range of dark input values into a wider range of output values, while 1 maps a narrow range of bright input values into a wider range of output values : gamma, gamma correction Monitor, 2.5 Piecewise-linear transformation functions The form of piecewise functions can be arbitrarily complex Contrast stretching Gray-level slicing Bit-plane slicing Histogram Processing Histogram h(rk ) nk where rk is the kth gray level and the number of pixels in the image having gray level rk Normalized histogram p(rk ) nk / n nkis Histogram equalization s T (r ), 0 r 1 r T 1 (s), 0 s 1 Probability density functions (PDF) dr p s ( s ) pr ( r ) ds r s T (r ) ( L 1) pr (w)dw 0 ds dT (r ) d r ( L 1) p (r ) ( L 1) p ( w ) dw r r dr dr dr 0 1 ps ( s ) L 1 k k nj j 0 j 0 n sk T (rk ) ( L 1) pr (rj ) ( L 1) , k 0,1,2,..., L 1 Histogram matching (specification) r s T (r ) ( L 1) pr (w)dw 0 z G( z ) ( L 1) pz (t )dt s 0 z G 1 ( s) G 1[T (r )] pz (z) is the desired PDF k k nj j 0 j 0 n sk T (rk ) ( L 1) pr (rj ) ( L 1) , k 0,1,2,..., L 1 k vk G ( z k ) ( L 1) p z ( zi ) sk , k 0,1,2,..., L 1 i 0 zk G 1[T (rk )], k 0,1,2,..., L 1 Histogram matching Obtain the histogram of the given image, T(r) Precompute a mapped level sk for each level rk Obtain the transformation function G from the given pz (z ) Precompute zk for each value of sk Map rk to its corresponding level sk ; then map level sk into the final level zk Local enhancement Histogram using a local neighborhood, for example 7*7 neighborhood Histogram using a local 3*3 neighborhood Use of histogram statistics for image enhancement r denotes a discrete random variable p(ri ) denotes the normalized histogram component corresponding to the ith value of r Mean L 1 m ri p (ri ) i 0 The nth moment L 1 n (r ) (ri m) n p(ri ) i 0 The second moment L 1 2 (r ) (ri m) 2 p(ri ) i 0 Global enhancement: The global mean and variance are measured over an entire image Local enhancement: The local mean and variance are used as the basis for making changes rs ,t is the gray level at coordinates (s,t) in the neighborhood p (rs ,t ) is the neighborhood normalized histogram component mean: mS xy r s ,t ( s ,t )S xy p(rs ,t ) local variance S2 xy 2 [ r m ] s,t S xy p(rs,t ) ( s ,t )S xy E, k0 , k1 , k2 are specified parameters M G is the global mean DG is the global standard deviation Mapping if mS xy k0 M G E f ( x, y ) g ( x, y) and k1 DG S xy k2 DG f ( x, y) otherwise Fundamentals of Spatial Filtering The Mechanics of Spatial Filtering R w(1,1) f ( x 1, y 1) w(1,0) f ( x 1, y ) w(0,0) f ( x, y ) w(1,0) f ( x 1, y ) w(1,1) f ( x 1, y 1) Image size: Mask size: g ( x, y ) a M N m n b w(s, t ) f ( x s, y t ) s at b a (m 1) / 2 and b (n 1) / 2 x 0,1,2,..., M 1 and y 0,1,2,..., N 1 Spatial Correlation and Convolution Vector Representation of Linear Filtering R w1 z1 w2 z 2 ... w9 z9 9 wi zi i 1 Smoothing Spatial Filters Smoothing Linear Filters Noise reduction Smoothing of false contours Reduction of irrelevant detail 1 9 R zi 9 i 1 a g ( x, y ) b w(s, t ) f ( x s, y t ) s at b a b w(s, t ) s at b Order-statistic filters median filter: Replace the value of a pixel by the median of the gray levels in the neighborhood of that pixel Noise-reduction Sharpening Spatial Filters Foundation The first-order derivative f f ( x 1) f ( x) x The second-order derivative f f ( x 1) f ( x 1) 2 f ( x) 2 x 2 Use of second derivatives for enhancement-The Laplacian Development of the method f f f 2 2 x y 2 2 2 f f ( x 1, y ) f ( x 1, y ) 2 f ( x, y ) 2 x 2 f f ( x, y 1) f ( x, y 1) 2 f ( x, y) 2 y 2 2 f [ f ( x 1, y) f ( x 1, y ) f ( x, y 1) f ( x, y 1)] 4 f ( x, y) if the center coefficien t f ( x, y ) 2 f ( x, y ) of the Laplacian mask is negative g ( x, y ) if the center coefficien t f ( x, y ) 2 f ( x, y ) of the Laplacian mask is positive Simplifications g ( x, y ) f ( x, y ) [ f ( x 1, y ) f ( x 1, y ) f ( x, y 1) f ( x, y 1)] 4 f ( x, y ) 5 f ( x, y ) [ f ( x 1, y ) f ( x 1, y ) f ( x, y 1) f ( x, y 1)] Unsharp masking and highboost filtering Unsharp masking Substract a blurred version of an image from the image itself g mask ( x, y ) f ( x, y ) f ( x, y ) f ( x, y ) : The image, f ( x, y ) blurred image : The g ( x, y) f ( x, y) k * g mask ( x, y) ,k 1 High-boost filtering g ( x, y) f ( x, y) k * g mask ( x, y) ,k 1 Using first-order derivatives for (nonlinear) image sharpening—The gradient f Gx x f f G y y The magnitude is rotation invariant (isotropic) f mag (f ) G G 2 x f 2 f x y f G x G y 2 1 2 2 y 1 2 Computing using cross differences, Roberts cross-gradient operators Gx ( z9 z5 ) and G y ( z8 z 6 ) f ( z9 z5 ) ( z8 z6 ) 2 f z9 z5 z8 z6 2 1 2 Sobel operators A weight value of 2 is to achieve some smoothing by giving more importance to the center point f ( z7 2 z8 z9 ) ( z1 2 z 2 z3 ) ( z3 2 z6 z9 ) ( z1 2 z 4 z7 ) Combining Spatial Enhancement Methods An example Laplacian to highlight fine detail Gradient to enhance prominent edges Smoothed version of the gradient image used to mask the Laplacian image Increase the dynamic range of the gray levels by using a gray-level transformation
© Copyright 2026 Paperzz