New Convergence Definitions for Sequences of Sets

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 852796, 6 pages
http://dx.doi.org/10.1155/2013/852796
Research Article
New Convergence Definitions for Sequences of Sets
Ömer KiGi1 and Fatih Nuray1,2
1
2
Faculty of Education, Mathematics Education Department, Cumhuriyet University, Sivas, Turkey
Department of Mathematics, Faculty of Science and Literature, Afyon Kocatepe University, Afyonkarahisar, Turkey
Correspondence should be addressed to Fatih Nuray; [email protected]
Received 14 May 2013; Accepted 26 September 2013
Academic Editor: Svatoslav Staněk
Copyright © 2013 Ö. KisΜ§i and F. Nuray. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Several notions of convergence for subsets of metric space appear in the literature. In this paper, we define Wijsman 𝐼-convergence
and Wijsman πΌβˆ— -convergence for sequences of sets and establish some basic theorems. Furthermore, we introduce the concepts of
Wijsman I-Cauchy sequence and Wijsman πΌβˆ— -Cauchy sequence and then study their certain properties.
1. Introduction and Background
The concept of convergence of sequences of points has been
extended by several authors (see [1–9]) to the concept of
convergence of sequences of sets. The one of these such
extensions that we will consider in this paper is Wijsman
convergence. We will define 𝐼-convergence for sequences of
sets and establish some basic results regarding these notions.
Let us start with fundamental definitions from the literature. The natural density of a set 𝐾 of positive integers is
defined by
𝛿 (𝐾) := lim
1
π‘›β†’βˆžπ‘›
|{π‘˜ ≀ 𝑛 : π‘˜ ∈ 𝐾}| ,
(1)
where |π‘˜ ≀ 𝑛 : π‘˜ ∈ 𝐾| denotes the number of elements of 𝐾
not exceeding 𝑛 ([10]).
Statistical convergence of sequences of points was introduced by Fast [11]. In [12], Schoenberg established some basic
properties of statistical convergence and also studied the
concept as a summability method.
A number sequence π‘₯ = (π‘₯π‘˜ ) is said to be statistically
convergent to the number πœ‰ if, for every πœ€ > 0,
1󡄨
󡄨
󡄨
󡄨
lim 󡄨󡄨{π‘˜ ≀ 𝑛 : 󡄨󡄨󡄨π‘₯π‘˜ βˆ’ πœ‰σ΅„¨σ΅„¨σ΅„¨ β‰₯ πœ€}󡄨󡄨󡄨 = 0.
π‘›β†’βˆžπ‘› 󡄨
(2)
In this case, we write π‘ π‘‘βˆ’ lim π‘₯π‘˜ = πœ‰. Statistical convergence is
a natural generalization of ordinary convergence. If lim π‘₯π‘˜ =
πœ‰, then 𝑠𝑑 βˆ’ lim π‘₯π‘˜ = πœ‰. The converse does not hold in general.
Definition 1 (see [13]). A family of sets 𝐼 βŠ† 2N is called an
ideal on N if and only if
(i) 0 ∈ 𝐼;
(ii) for each 𝐴, 𝐡 ∈ 𝐼 one has 𝐴 βˆͺ 𝐡 ∈ 𝐼;
(iii) for each 𝐴 ∈ 𝐼 and each 𝐡 βŠ† 𝐴 one has 𝐡 ∈ 𝐼.
An ideal is called nontrivial if N βˆ‰ 𝐼, and nontrivial ideal
is called admissible if {𝑛} ∈ 𝐼 for each 𝑛 ∈ N.
Definition 2 (see [14]). A family of sets 𝐹 βŠ† 2N is a filter in N
if and only if
(i) 0 βˆ‰ 𝐹;
(ii) for each 𝐴, 𝐡 ∈ 𝐹 one has 𝐴 ∩ 𝐡 ∈ 𝐹;
(iii) for each 𝐴 ∈ 𝐹 and each 𝐡 βŠ‡ 𝐴 one has 𝐡 ∈ 𝐹.
Proposition 3 (see [14]). 𝐼 is a nontrivial ideal in N if and only
if
𝐹 = 𝐹 (𝐼) = {𝑀 = N \ 𝐴 : 𝐴 ∈ 𝐼}
(3)
is a filter in N.
Definition 4 (see [14]). Let 𝐼 be a nontrivial ideal of subsets of
N. A number sequence (π‘₯𝑛 )π‘›βˆˆN is said to be 𝐼-convergent to πœ‰
(πœ‰ = 𝐼 βˆ’ lim𝑛 β†’ ∞ π‘₯𝑛 ) if and only if for each πœ€ > 0 the set
󡄨
󡄨
{π‘˜ ∈ N : 󡄨󡄨󡄨π‘₯π‘˜ βˆ’ πœ‰σ΅„¨σ΅„¨σ΅„¨ β‰₯ πœ€}
(4)
belongs to 𝐼. The element πœ‰ is called the 𝐼 limit of the number
sequence π‘₯ = (π‘₯𝑛 )π‘›βˆˆN .
2
Abstract and Applied Analysis
The concept of 𝐼-convergence of real sequences is a
generalization of statistical convergence which is based on
the structure of the ideal 𝐼 of subsets of the set of natural
numbers. Kostyrko et al. [14] introduced the concept of 𝐼convergence of sequences in a metric space and studied
some properties of this convergence. 𝐼-convergence of real
sequences coincides with the ordinary convergence if 𝐼 is the
ideal of all finite subsets of N and with the statistical convergence if 𝐼 is the ideal of subsets of N of natural density zero.
Definition 5 (see [14]). An admissible ideal 𝐼 βŠ† 2N is said to
have the property (AP) if for any sequence {𝐴 1 , 𝐴 2 , . . .} of
mutually disjoint sets of 𝐼, there is sequence {𝐡1 , 𝐡2 , . . .} of
sets such that each symmetric difference 𝐴 𝑖 Δ𝐡𝑖 (𝑖 = 1, 2, . . .)
is finite and β‹ƒβˆž
𝑖=1 𝐡𝑖 ∈ 𝐼.
Definition 5 is similar to the condition (APO) used in [15].
In [14], the concept of πΌβˆ— -convergence which is closely
related to 𝐼-convergence has been introduced.
Definition 6 (see [14]). A sequence π‘₯ = (π‘₯𝑛 ) of elements of 𝑋
is said to be πΌβˆ— -convergence to πœ‰ if and only if there exists a
set 𝑀 ∈ 𝐹(𝐼),
𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– < π‘šπ‘–+1 , 𝑖 ∈ N} βŠ‚ N
(5)
such that limπ‘˜ β†’ ∞ π‘₯π‘šπ‘˜ = πœ‰.
βˆ—
In [14], it is proved that 𝐼-convergence and 𝐼 -convergence are equivalent for admissible ideals with property
(AP).
Also, in order to prove that 𝐼-convergent sequence coincides with πΌβˆ— -convergent sequence for admissible ideals with
property (AP), we need the following lemma.
Lemma 7 (see [13]). Let {𝑃𝑖 }∞
𝑖=1 be a countable collection of
subsets of N such that 𝑃𝑖 ∈ 𝐹(𝐼) is a filter which associates with
an admissible ideal 𝐼 with property (AP). Then there exists a
set 𝑃 βŠ‚ N such that 𝑃 ∈ 𝐹(𝐼) and the set 𝑃 \ 𝑃𝑖 is finite for all 𝑖.
Theorem 8 (see [13]). Let 𝐼 βŠ† 2N be an admissible ideals with
property (AP) and π‘₯ = (π‘₯𝑛 ) be a number sequence. Then 𝐼 βˆ’
lim𝑛 β†’ ∞ π‘₯𝑛 = πœ‰ if and only if there exists a set 𝑃 ∈ 𝐹(𝐼), 𝑃 =
{𝑝 = (𝑝𝑖 ) : 𝑝𝑖 < 𝑝𝑖+1 , 𝑖 ∈ N} such that limπ‘˜ β†’ ∞ π‘₯π‘π‘˜ = πœ‰.
Definition 9 (see [9]). Let (𝑋, 𝑑) be a metric space. For any
nonempty closed subsets 𝐴, 𝐴 π‘˜ βŠ† 𝑋, one says that the
sequence {𝐴 π‘˜ } is Wijsman convergent to 𝐴:
lim 𝑑 (π‘₯, 𝐴 π‘˜ ) = 𝑑 (π‘₯, 𝐴)
π‘˜β†’βˆž
(6)
for each π‘₯ ∈ 𝑋. In this case one writes π‘Š βˆ’ limπ‘˜ β†’ ∞ 𝐴 π‘˜ = 𝐴.
As an example, consider the following sequence of circles
in the (π‘₯, 𝑦)-plane: 𝐴 π‘˜ = {(π‘₯, 𝑦) : π‘₯2 + 𝑦2 + 2π‘˜π‘₯ = 0}. As
π‘˜ β†’ ∞ the sequence is Wijsman convergent to the 𝑦-axis
𝐴 = {(π‘₯, 𝑦) : π‘₯ = 0}.
Definition 10 (see [16]). Let (𝑋, 𝑑) be a metric space. For
any nonempty closed subsets 𝐴, 𝐴 π‘˜ βŠ† 𝑋, one says that the
sequence {𝐴 π‘˜ } is Wijsman statistical convergent to 𝐴 if for
πœ€ > 0 and for each π‘₯ ∈ 𝑋,
lim
1 󡄨󡄨
󡄨
󡄨
󡄨
󡄨󡄨{π‘˜ ≀ 𝑛 : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}󡄨󡄨󡄨 = 0.
π‘›β†’βˆžπ‘›
(7)
In this case one writes 𝑠𝑑 βˆ’ limπ‘Šπ΄ π‘˜ = 𝐴 or 𝐴 π‘˜ β†’ 𝐴(WS).
Consider
WS := {{𝐴 π‘˜ } : 𝑠𝑑 βˆ’ lim𝐴 π‘˜ = 𝐴} ,
π‘Š
(8)
where WS denotes the set of Wijsman statistical convergence
sequences.
Also the concept of bounded sequence for sequences of
sets was given by Nuray and Rhoades [16] as follows.
Let (𝑋, 𝜌) be a metric space. For any nonempty closed
subsets 𝐴 π‘˜ of 𝑋, one says that the sequence {𝐴 π‘˜ } is bounded
if supπ‘˜ 𝑑(π‘₯, 𝐴 π‘˜ ) < ∞ for each π‘₯ ∈ 𝑋.
2. Wijsman 𝐼-Convergence
In this section, we will define Wijsman 𝐼-convergence and
Wijsman πΌβˆ— -convergence of sequences of sets, give the relationship between them, and establish some basic theorems.
Definition 11. Let (𝑋, 𝑑) be a metric space and 𝐼 βŠ† 2N be a
proper ideal in N. For any nonempty closed subsets 𝐴, 𝐴 π‘˜ βŠ‚
𝑋, one says that the sequence {𝐴 π‘˜ } is Wijsman 𝐼-convergent
to 𝐴, if, for each πœ€ > 0 and for each π‘₯ ∈ 𝑋, the set
󡄨
󡄨
𝐴 (π‘₯, πœ€) = {π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}
(9)
belongs to 𝐼. In this case, one writes πΌπ‘Š βˆ’lim 𝐴 π‘˜ = 𝐴 or 𝐴 π‘˜ β†’
𝐴(πΌπ‘Š), and the set of Wijsman 𝐼-convergent sequences of sets
will be denoted by
󡄨
󡄨
πΌπ‘Š = {{𝐴 π‘˜ } : {π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ πœ€} ∈ 𝐼} . (10)
Example 12. 𝐼 βŠ† 2N be a proper ideal in N, (𝑋, 𝑑) a metric
space, and 𝐴, 𝐴 π‘˜ βŠ‚ 𝑋 nonempty closed subsets. Let 𝑋 = R2 ,
{𝐴 π‘˜ } be following sequence:
{(π‘₯, 𝑦) ∈ R2 : π‘₯2 + 𝑦2 βˆ’ 2π‘˜π‘¦ = 0}
π΄π‘˜ = {
{(π‘₯, 𝑦) ∈ R2 : 𝑦 = βˆ’1}
if, π‘˜ =ΜΈ 𝑛2
if, π‘˜ = 𝑛2 , (11)
𝐴 = {(π‘₯, 𝑦) ∈ R2 : 𝑦 = 0} .
For π‘˜ = 𝑛2 , 𝑑((π‘₯, 𝑦), 𝐴 𝑛2 ) = |𝑦+1| =ΜΈ 𝑑((π‘₯, 𝑦); 𝐴) = |𝑦|. Let
us take a point (π‘₯βˆ— , π‘¦βˆ— ) outside π‘₯2 + 𝑦2 βˆ’ 2π‘˜π‘¦ = 0. For π‘˜ =ΜΈ 𝑛2 ,
we write 𝑑((π‘₯βˆ— , π‘¦βˆ— ), 𝐴 π‘˜ ) β†’ 𝑑((π‘₯βˆ— , π‘¦βˆ— ), 𝐴) = |π‘¦βˆ— |. Since the
line equation is
π‘¦βˆ’π‘˜
π‘₯βˆ’0
= βˆ—
,
π‘₯βˆ—
𝑦 βˆ’π‘˜
(12)
where the line is passing from (0, π‘˜) the center point of the
circle and (π‘₯βˆ— , π‘¦βˆ— ) the outside of the circle, we write 𝑦 = π‘˜ +
Abstract and Applied Analysis
3
((π‘¦βˆ— βˆ’ π‘˜)/π‘₯βˆ— ) β‹… π‘₯. If we write this 𝑦 = π‘˜ + ((π‘¦βˆ— βˆ’ π‘˜)/π‘₯βˆ— ) β‹… π‘₯
value on the circle equation π‘₯2 + 𝑦2 βˆ’ 2π‘˜π‘¦ = 0, we can get
π‘₯=
|π‘˜| β‹… π‘₯βˆ—
√(π‘₯βˆ— )2 + (π‘¦βˆ— βˆ’ π‘˜)2
.
Since
lim
1 󡄨󡄨
󡄨
󡄨
󡄨
󡄨󡄨{π‘˜ ≀ 𝑛 : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 𝑛 ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}󡄨󡄨󡄨 = 0,
(21)
π‘›β†’βˆžπ‘›
(13)
For π‘˜ β†’ ∞, if we take limit, it will be π‘₯ β†’ π‘₯βˆ— . If we write
π‘₯ = (|π‘˜|β‹…π‘₯βˆ— )/√(π‘₯βˆ— )2 + (π‘¦βˆ— βˆ’ π‘˜)2 on the 𝑦 = π‘˜+((π‘¦βˆ— βˆ’π‘˜)/π‘₯βˆ— )β‹…
π‘₯, we get 𝑦 β†’ 0 (π‘˜ β†’ ∞). Thus, for π‘˜ =ΜΈ 𝑛2
2
󡄨 󡄨
𝑑 ((π‘₯βˆ— , π‘¦βˆ— ) , 𝐴 π‘˜ ) = √(π‘₯ βˆ’ π‘₯βˆ— )2 + (𝑦 βˆ’ π‘¦βˆ— ) 󳨀→ σ΅„¨σ΅„¨σ΅„¨π‘¦βˆ— 󡄨󡄨󡄨 . (14)
So we get 𝑑((π‘₯βˆ— , π‘¦βˆ— ), 𝐴 π‘˜ ) β†’ 𝑑((π‘₯βˆ— , π‘¦βˆ— ), 𝐴) = |π‘¦βˆ— |, for π‘˜ =ΜΈ 𝑛2 .
For π‘˜ = 𝑛2 and π‘˜ =ΜΈ 𝑛2 , the set sequence {𝐴 π‘˜ } has two
different limits. Thus {𝐴 π‘˜ } is not Wijsman convergent to set
𝐴, but
󡄨
󡄨
{π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 π‘˜ ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}
(15)
= {π‘˜ ∈ N : π‘˜ = 𝑛2 } βŠ‚ 𝐼𝑑 .
Thus, suppose that
󡄨
󡄨
𝐴 (π‘₯, 𝑦, πœ€) = {π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 π‘˜ ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}
(16)
for πœ€ > 0 and for each (π‘₯, 𝑦) ∈ R2 .
Since limπ‘˜ β†’ ∞ [|𝑑((π‘₯, 𝑦), 𝐴 π‘˜ ) βˆ’ 𝑑((π‘₯, 𝑦), 𝐴)|] = 0, for
π‘˜ =ΜΈ 𝑛2 , for each πœ€ > 0,
󡄨
󡄨
βˆƒπ‘˜πœ€ ∈ N : βˆ€π‘˜ > π‘˜πœ€ : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 π‘˜ ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 < πœ€.
(17)
Define the set 𝐴 π‘˜πœ€ (π‘₯, 𝑦) as
󡄨
󡄨
𝐴 π‘˜πœ€ (π‘₯, 𝑦) := {π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 π‘˜ ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 > πœ€} .
(18)
Thus, since 𝐴(π‘₯, 𝑦, πœ€) = 𝐴 π‘˜πœ€ (π‘₯, 𝑦) βˆͺ {π‘˜ ∈ N : π‘˜ = 𝑛2 } and
𝐴 π‘˜πœ€ (π‘₯, 𝑦) ∈ 𝐼𝑑 and {π‘˜ ∈ N : π‘˜ = 𝑛2 } ∈ 𝐼𝑑 , we can write
𝐴 (π‘₯, 𝑦, πœ€)
󡄨
󡄨
:= {π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 π‘˜ ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 > πœ€} ∈ 𝐼𝑑 ,
(19)
where 𝐼𝑑 = {𝐴 : 𝛿(𝐴) = 0}. So the set sequence {𝐴 𝑛 } is
Wijsman 𝐼-convergent to set 𝐴.
Example 13. Let 𝐼 βŠ† 2N be a proper ideal in N, (𝑋, 𝑑) a metric
space, and 𝐴, 𝐴 𝑛 βŠ‚ 𝑋 nonempty closed subsets. Let 𝑋 = R2 ,
{𝐴 𝑛 } be following sequence:
𝐴𝑛
1
{{(π‘₯, 𝑦) ∈ R2 : 0 ≀ π‘₯ ≀ 𝑛, 0 ≀ 𝑦 ≀ β‹… π‘₯} , if, 𝑛 =ΜΈ π‘˜2
={
𝑛
2
if, 𝑛 = π‘˜2 ,
{{(π‘₯, 𝑦) ∈ R : π‘₯ β‰₯ 0, 𝑦 = 1} ,
2
𝐴 = {(π‘₯, 𝑦) ∈ R : π‘₯ β‰₯ 0, 𝑦 = 0} .
(20)
the set sequence {𝐴 𝑛 } is Wijsman statistical convergent to
set 𝐴. Thus we can write 𝑠𝑑 βˆ’ limπ‘Šπ΄ 𝑛 = 𝐴, but this
sequence is not Wijsman convergent to set 𝐴. Because for
𝑛 =ΜΈ π‘˜2 , lim𝑛 β†’ ∞ 𝑑((π‘₯, 𝑦), 𝐴 𝑛 ) = 𝑑((π‘₯, 𝑦), 𝐴), but for 𝑛 = π‘˜2 ,
lim𝑛 β†’ ∞ 𝑑((π‘₯, 𝑦), 𝐴 𝑛 ) =ΜΈ 𝑑((π‘₯, 𝑦), 𝐴). Let 𝐼𝑑 βŠ‚ 2N be proper
ideal. Define set 𝐾 as
󡄨
󡄨
𝐾 = 𝐾 (πœ€) = {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 𝑛 ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 β‰₯ πœ€} .
(22)
If we take 𝐼𝑑 for 𝐼, Wijsman ideal convergent coincides
with Wijsman statistical convergent. Really, one has
󡄨
󡄨
{𝑛 ∈ N : 󡄨󡄨󡄨𝑑 ((π‘₯, 𝑦) , 𝐴 𝑛 ) βˆ’ 𝑑 ((π‘₯, 𝑦) , 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}
(23)
= {𝑛 ∈ N : 𝑛 = π‘˜2 } βŠ‚ 𝐼𝑑 .
Since the Wijsman topology is not first countable in
general, if {𝐴 π‘˜ } is convergent to the set 𝐴 Wijsman sense,
every subsequence of {𝐴 π‘˜ } may not be convergent to 𝐴. But
if 𝑋 is separable, then every subsequence of a convergent set
sequence is convergent to the same limit.
Definition 14. Let 𝐼 βŠ† 2N be a proper ideal in N and (𝑋, 𝑑) be
a separable metric space. For any nonempty closed subsets
𝐴, 𝐴 π‘˜ βŠ‚ 𝑋, one says that the sequence {𝐴 π‘˜ } is Wijsman
πΌβˆ— -convergent to 𝐴, if and only if there exists a set 𝑀 ∈
𝐹(𝐼), 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– < π‘šπ‘–+1 , 𝑖 ∈ N} βŠ‚ N such that
for each π‘₯ ∈ 𝑋
lim 𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑 (π‘₯, 𝐴) .
π‘˜β†’βˆž
(24)
βˆ—
βˆ’ lim 𝐴 π‘˜ = 𝐴.
In this case, one writes πΌπ‘Š
Definition 15. Let 𝐼 βŠ† 2N be an admissible ideal in N and
(𝑋, 𝑑) be a separable metric space. For any nonempty closed
subset 𝐴 𝑛 in 𝑋, one says that the sequence {𝐴 𝑛 } is Wijsman
𝐼-Cauchy sequence if for each πœ€ > 0 and for each π‘₯ ∈ 𝑋, there
exists a number 𝑁 = 𝑁(πœ€) such that
󡄨
󡄨
{𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 𝑁)󡄨󡄨󡄨 β‰₯ πœ€}
(25)
belongs to 𝐼.
Definition 16. Let 𝐼 βŠ† 2N be an admissible ideal in N and
(𝑋, 𝑑) be a separable metric space. For any nonempty closed
subsets 𝐴 π‘˜ βŠ‚ 𝑋, one says that the sequence {𝐴 π‘˜ } is Wijsman
πΌβˆ— -Cauchy sequences if there exists a set 𝑀 = {π‘š = (π‘šπ‘– ) :
π‘šπ‘– < π‘šπ‘–+1 , 𝑖 ∈ N} βŠ‚ N, 𝑀 ∈ 𝐹(𝐼) such that the subsequence
𝐴 𝑀 = {𝐴 π‘šπ‘˜ } is Wijsman Cauchy in 𝑋; that is,
󡄨󡄨
󡄨󡄨
lim 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘šπ‘ )󡄨󡄨󡄨 = 0.
󡄨
π‘˜,𝑝 β†’ ∞ 󡄨
(26)
Now we will prove that Wijsman 𝐼-convergence implies
the Wijsman 𝐼-Cauchy condition.
4
Abstract and Applied Analysis
Theorem 17. Let 𝐼 be an arbitrary admissible ideal and let 𝑋
be a separable metric space. Then πΌπ‘Š βˆ’ lim 𝐴 𝑛 = 𝐴 implies that
{𝐴 𝑛 } is Wijsman 𝐼-Cauchy sequence.
Proof. Let 𝐼 be an arbitrary admissible ideal and πΌπ‘Š βˆ’lim 𝐴 𝑛 =
𝐴. Then for each πœ€ > 0 and for each π‘₯ ∈ 𝑋, we have
󡄨
󡄨
𝐴 (π‘₯, πœ€) = {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ πœ€}
(27)
that belongs to 𝐼. Since 𝐼 is an admissible ideal, there exists an
𝑛0 ∈ N such that 𝑛0 βˆ‰ 𝐴(π‘₯, πœ€).
Let 𝐡(π‘₯, πœ€) = {𝑛 ∈ N : |𝑑(π‘₯, 𝐴 𝑛 )βˆ’π‘‘(π‘₯, 𝐴 𝑛0 )| β‰₯ 2πœ€}. Taking
into account the inequality
󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 ) βˆ’ 𝑑 (π‘₯, 𝐴 )󡄨󡄨󡄨
󡄨󡄨
𝑛
𝑛0 󡄨󡄨
󡄨 (28)
󡄨 󡄨
󡄨
≀ 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 + 󡄨󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛0 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨󡄨 ,
we observe that if 𝑛 ∈ 𝐡(π‘₯, πœ€), then
󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 + 󡄨󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨󡄨 β‰₯ 2πœ€.
󡄨
󡄨 󡄨
0
󡄨
(29)
On the other hand, since 𝑛0 βˆ‰ 𝐴(π‘₯, πœ€), we have |𝑑(π‘₯, 𝐴 𝑛0 ) βˆ’
𝑑(π‘₯, 𝐴)| < πœ€. Here we conclude that |𝑑(π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑(π‘₯, 𝐴)| β‰₯ πœ€;
hence 𝑛 ∈ 𝐴(π‘₯, πœ€). Observe that 𝐡(π‘₯, πœ€) βŠ‚ 𝐴(π‘₯, πœ€) ∈ 𝐼 for each
πœ€ > 0 and for each π‘₯ ∈ 𝑋. This gives that 𝐡(π‘₯, πœ€) ∈ 𝐼; that is
{𝐴 𝑛 } is Wijsman 𝐼-Cauchy sequence.
Theorem 18. Let 𝐼 be an admissible ideal and let 𝑋 be
a separable metric space. If {𝐴 𝑛 } is Wijsman πΌβˆ— -Cauchy
sequence, then it is Wijsman 𝐼-Cauchy sequence.
Proof. Let {𝐴 𝑛 } be Wijsman πΌβˆ— -Cauchy sequence; then by the
definition, there exists a set 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– < π‘šπ‘–+1 , 𝑖 ∈
N} βŠ‚ N, 𝑀 ∈ 𝐹(𝐼) such that
󡄨󡄨
󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 π‘š ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨 < πœ€
(30)
󡄨󡄨
π‘˜
𝑝 󡄨
󡄨
for each πœ€ > 0, for each π‘₯ ∈ 𝑋, and for all π‘˜, 𝑝 > π‘˜0 = π‘˜0 (πœ€).
Let 𝑁 = 𝑁(πœ€) = π‘šπ‘˜0 +1 . Then for every πœ€ > 0, we have
󡄨󡄨
󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴 𝑁)󡄨󡄨󡄨 < πœ€,
󡄨
󡄨
π‘˜ > π‘˜0 .
Now let 𝐻 = N \ 𝑀. It is clear that 𝐻 ∈ 𝐼 and that
󡄨
󡄨
𝐴 (π‘₯, πœ€) = {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 𝑁)󡄨󡄨󡄨 β‰₯ πœ€}
βŠ‚ 𝐻 βˆͺ {π‘š1 , π‘š2 , . . . , π‘šπ‘˜0 }
(31)
(32)
belongs to 𝐼. Therefore, for every πœ€ > 0, we can find a 𝑁 =
𝑁(πœ€) such that 𝐴(π‘₯, πœ€) ∈ 𝐼; that is, {𝐴 𝑛 } is Wijsman 𝐼-Cauchy
sequence. Hence the proof is complete.
In order to prove that Wijsman 𝐼-convergent sequence
coincides with Wijsman πΌβˆ— -convergent sequence for admissible ideals with property (AP), we need the following lemma.
Lemma 19. Let 𝐼 βŠ† 2N be an admissible ideal with property (AP) and (𝑋, 𝑑) a separable metric space. If πΌπ‘Š βˆ’
lim𝑛 β†’ ∞ 𝑑(π‘₯, 𝐴 𝑛 ) = 𝑑(π‘₯, 𝐴), then there exists a set 𝑃 ∈
𝐹(𝐼) 𝑃 = {𝑝 = (𝑝𝑖 ) : 𝑝𝑖 < 𝑝𝑖+1 , 𝑖 ∈ N} such that πΌπ‘Šβˆ’
limπ‘˜ β†’ ∞ 𝑑(π‘₯, 𝐴 π‘π‘˜ ) = 𝑑(π‘₯, 𝐴).
Theorem 20. Let 𝐼 βŠ† 2N be an admissible ideal with property
(AP), let (𝑋, 𝑑) be an arbitrary separable metric space and π‘₯ =
(π‘₯𝑛 ) ∈ 𝑋. Then, πΌπ‘Š βˆ’ lim𝑛 β†’ ∞ 𝑑(π‘₯, 𝐴 𝑛 ) = 𝑑(π‘₯, 𝐴), if and only
if there exists a set 𝑃 ∈ 𝐹(𝐼), 𝑃 = {𝑝 = (𝑝𝑖 ) : 𝑝𝑖 < 𝑝𝑖+1 , 𝑖 ∈ N}
such that πΌπ‘Š βˆ’ limπ‘˜ β†’ ∞ 𝑑(π‘₯, 𝐴 π‘π‘˜ ) = 𝑑(π‘₯, 𝐴).
Now we prove that, a Wijsman 𝐼-Cauchy sequence
coincides with a Wijsman πΌβˆ— -Cauchy sequence for admissible
ideals with property (AP).
Theorem 21. If 𝐼 βŠ† 2N is an admissible ideal with property
(AP) and if (𝑋, 𝑑) is a separable metric space, then the
concepts Wijsman 𝐼-Cauchy sequence and Wijsman πΌβˆ— -Cauchy
sequence coincide.
Proof. If a sequence is Wijsman πΌβˆ— -Cauchy, then it is Wijsman
𝐼-Cauchy by Theorem 18 where 𝐼 does not need to have
the (AP) property. Now it is sufficient to prove that {𝐴 𝑛 } is
Wijsman πΌβˆ— -Cauchy sequence in 𝑋 under assumption that
{𝐴 𝑛 } is a Wijsman 𝐼-Cauchy sequence. Let {𝐴 𝑛 } be a Wijsman
𝐼-Cauchy sequence. Then by definition, there exists a 𝑁 =
𝑁(πœ€) such that
󡄨
󡄨
𝐴 (π‘₯, πœ€) = {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 𝑁)󡄨󡄨󡄨 β‰₯ πœ€} ∈ 𝐼
(33)
for each πœ€ > 0 and for each π‘₯ ∈ 𝑋.
Let 𝑃𝑖 = {𝑛 ∈ N : |𝑑(π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑(π‘₯, 𝐴 π‘šπ‘– )| < 1/𝑖}, 𝑖 = 1, 2, . . .
where π‘šπ‘– = 𝑁(1/𝑖). It is clear that 𝑃𝑖 ∈ 𝐹(𝐼) for 𝑖 = 1, 2, . . ..
Since 𝐼 has (AP) property, then by Lemma 7 there exists a set
𝑃 βŠ‚ N such that 𝑃 ∈ 𝐹(𝐼) and 𝑃 \ 𝑃𝑖 is finite for all 𝑖. Now we
show that
󡄨
󡄨
lim 󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨 = 0.
(34)
𝑛,π‘š β†’ ∞ 󡄨
To prove this, let πœ€ > 0, π‘₯ ∈ 𝑋, and 𝑗 ∈ N such that 𝑗 > 2/πœ€. If
π‘š, 𝑛 ∈ 𝑃 then 𝑃 \ 𝑃𝑖 is finite set, therefore there exists π‘˜ = π‘˜(𝑗)
such that
󡄨󡄨
󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨 < 1 ,
󡄨󡄨
𝑗 󡄨
󡄨 𝑗
󡄨󡄨
󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 π‘š ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨 < 1
󡄨󡄨
𝑗 󡄨
󡄨 𝑗
(35)
for all π‘š, 𝑛 > π‘˜(𝑗). Hence it follows that
󡄨󡄨
󡄨󡄨
󡄨 󡄨󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨 < 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘šπ‘— )󡄨󡄨󡄨
󡄨
󡄨
󡄨󡄨
󡄨󡄨
+ 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘š ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘šπ‘— )󡄨󡄨󡄨 < πœ€
󡄨
󡄨
(36)
for π‘š, 𝑛 > π‘˜(𝑗).
Thus, for any πœ€ > 0, there exists π‘˜ = π‘˜(πœ€) and 𝑛, π‘š ∈ 𝑃 ∈
𝐹(𝐼):
󡄨󡄨
󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨 < πœ€.
(37)
This shows that the sequences {𝐴 𝑛 } is a Wijsman πΌβˆ— -Cauchy
sequence.
Abstract and Applied Analysis
5
Theorem 22. Let 𝐼 be an admissible ideal and (𝑋, 𝑑) a
βˆ—
βˆ’ lim 𝐴 π‘˜ = 𝐴 implies that
separable metric space. Then πΌπ‘Š
{𝐴 𝑛 } is a Wijsman 𝐼-Cauchy sequence.
π‘˜+1
If 𝑛 > 𝑛0 and 𝑛 βˆ‰ 𝑉, so 𝑛 βˆ‰ β‹ƒπ‘˜+1
𝑗=1 𝑉𝑗 and by (44) 𝑛 βˆ‰ ⋃𝑗=1 𝑇𝑗 .
But then |𝑑(π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑(π‘₯, 𝐴)| < 1/(𝑛 + 1) < 𝛾 for each π‘₯ ∈ 𝑋,
so we have limπ‘˜ β†’ ∞ 𝑑(π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑(π‘₯, 𝐴).
βˆ—
Proof. Let πΌπ‘Š
βˆ’ lim 𝐴 π‘˜ = 𝐴. Then by definition there exists a
set 𝑀 ∈ 𝐹(𝐼), 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– < π‘šπ‘–+1 , 𝑖 ∈ N} βŠ‚ N such
that
3. Wijsman 𝐼-Limit Points and Wijsman
𝐼-Cluster Points Sequences of Sets
lim 𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑 (π‘₯, 𝐴)
(38)
π‘˜β†’βˆž
for each πœ€ > 0 and for each π‘₯ ∈ 𝑋, and π‘˜, 𝑝 > π‘˜0 ,
󡄨󡄨
󡄨
󡄨󡄨𝑑 (π‘₯, 𝐴 π‘š ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘š )󡄨󡄨󡄨
󡄨󡄨
π‘˜
𝑝 󡄨
󡄨
󡄨󡄨
󡄨󡄨
󡄨 󡄨󡄨
< 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨󡄨 + 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 (39)
󡄨
󡄨
πœ€ πœ€
< + = πœ€.
2 2
Therefore,
󡄨󡄨
󡄨󡄨
lim 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴 π‘šπ‘ )󡄨󡄨󡄨 = 0.
󡄨
󡄨
π‘˜,𝑝 β†’ ∞
(40)
Hence, {𝐴 𝑛 } is a Wijsman 𝐼-Cauchy sequence.
Theorem 23. Let 𝐼 be an admissible ideal and (𝑋, 𝑑) a
separable metric space. If the ideal 𝐼 has property (AP) and if
(𝑋, 𝑑) is an arbitrary metric space, then for arbitrary sequence
βˆ—
βˆ’
{𝐴 𝑛 }π‘›βˆˆN of elements of 𝑋 πΌπ‘Š βˆ’ lim 𝐴 𝑛 = 𝐴 implies πΌπ‘Š
lim 𝐴 𝑛 = 𝐴.
Proof. Suppose that 𝐼 satisfies condition (AP). Let πΌπ‘Š βˆ’
lim 𝐴 𝑛 = 𝐴. Then
󡄨
󡄨
𝑇 (πœ€, π‘₯) = {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ πœ€} ∈ 𝐼
(41)
for each πœ€ > 0 and for each π‘₯ ∈ 𝑋. Put
󡄨
󡄨
𝑇1 = {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ 1} ,
𝑇𝑛 = {𝑛 ∈ N :
1
1 󡄨󡄨
󡄨
≀ 󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 <
}
𝑛
π‘›βˆ’1
(42)
for 𝑛 β‰₯ 2, and 𝑛 ∈ N. Obviously 𝑇𝑖 ∩ 𝑇𝑗 = 0 for 𝑖 =ΜΈ 𝑗. By
condition (AP) there exists a sequence of sets {𝑉𝑛 }π‘›βˆˆN such
that 𝑇𝑗 Δ𝑉𝑗 are finite sets for 𝑗 ∈ N and 𝑉 = β‹ƒβˆž
𝑗=1 𝑉𝑗 ∈ 𝐼. It is
sufficient to prove that for 𝑀 = N \ 𝑉, 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– <
π‘šπ‘–+1 , 𝑖 ∈ N} ∈ 𝐹(𝐼), we have limπ‘˜ β†’ ∞ 𝑑(π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑(π‘₯, 𝐴).
Let 𝛾 > 0. Choose π‘˜ ∈ N such that 1/(π‘˜ + 1) < 𝛾. Then
π‘˜+1
󡄨
󡄨
{𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 β‰₯ 𝛾} βŠ‚ ⋃ 𝑇𝑗 .
(43)
𝑗=1
Since 𝑇𝑗 Δ𝑉𝑗 , 𝑗 = 1, 2, . . . are finite sets, there exists 𝑛0 ∈ N
such that
π‘˜+1
( ⋃ 𝑉𝑗 ) ∩ {𝑛 ∈ N : 𝑛 > 𝑛0 }
𝑗=1
π‘˜+1
= ( ⋃ 𝑇𝑗 ) ∩ {𝑛 ∈ N : 𝑛 > 𝑛0 } .
𝑗=1
(44)
In this section, we introduce Wijsman 𝐼-limit points of
sequences of sets and Wijsman 𝐼-cluster points of sequences
of sets, prove some basic properties of these concepts, and
establish some basic theorems.
Definition 24. Let 𝐼 βŠ† 2N a proper ideal in N and (𝑋, 𝑑) a
separable metric space. For any nonempty closed subsets 𝐴 𝑛 ,
𝐡𝑛 βŠ‚ 𝑋, one says that the sequences {𝐴 𝑛 } and {𝐡𝑛 } are almost
equal with respect to 𝐼 if
{𝑛 ∈ N : 𝐴 𝑛 =ΜΈ 𝐡𝑛 } ∈ 𝐼,
(45)
and we write 𝐼-a.a.n 𝐴 𝑛 = 𝐡𝑛 .
Definition 25. Let 𝐼 βŠ† 2N be a proper ideal in N and let (𝑋, 𝑑)
be a separable metric space; 𝐴 𝑛 is nonempty closed subset
of 𝑋. If {𝐴 𝑛 }𝐾 is subsequence of {𝐴 𝑛 } and 𝐾 := {𝑛(𝑗) : 𝑗 ∈
N}, then we abbreviate {𝐴 𝑛𝑗 } by {𝐴 𝑛 }𝐾 . If 𝐾 ∈ 𝐼, then {𝐴 𝑛 }𝐾
subsequence is called thin subsequence of {𝐴 𝑛 }. If 𝐾 βˆ‰ 𝐼, then
{𝐴 𝑛 }𝐾 subsequence is called nonthin subsequence of {𝐴 𝑛 }.
Definition 26. Let 𝐼 βŠ† 2N be a proper ideal in N and let (𝑋, 𝑑)
be a separable metric space, for any nonempty closed subsets
𝐴 π‘˜ βŠ‚ 𝑋. One has the following.
(i) 𝐴 ∈ 𝑋 is said to be a Wijsman 𝐼-limit point of {𝐴 𝑛 }
provided that there is a set 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– <
π‘šπ‘–+1 , 𝑖 ∈ N} βŠ‚ N such that 𝑀 βˆ‰ 𝐼 and for each π‘₯ ∈
𝑋 limπ‘˜ β†’ ∞ 𝑑(π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑(π‘₯, 𝐴).
(ii) 𝐴 ∈ 𝑋 is said to be a Wijsman 𝐼-cluster point of {𝐴 𝑛 }
if and only if for each πœ€ > 0, for each π‘₯ ∈ 𝑋, we have
󡄨
󡄨
{𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 < πœ€} βˆ‰ 𝐼.
(46)
Denote by πΌπ‘Š(Ξ› {𝐴 𝑛 } ), πΌπ‘Š(Ξ“{𝐴 𝑛 } ), and 𝐿 {𝐴 𝑛 } the set of
all Wijsman 𝐼-limit, Wijsman 𝐼-cluster, and Wijsman limit
points of {𝐴 𝑛 }, respectively.
For the sequences {𝐴 𝑛 }, πΌπ‘Š(Ξ“{𝐴 𝑛 } ) βŠ† πΌπ‘Š(𝐿 {𝐴 𝑛 } ). Let 𝐴 ∈
πΌπ‘Š(Ξ“{𝐴 𝑛 } ). Then for each sequence {𝐴 𝑛 } βŠ‚ 𝑋, we have
limπ‘˜ β†’ ∞ 𝑑(π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑(π‘₯, 𝐴) which means that 𝐴 ∈ 𝐿 {𝐴 𝑛 } .
Theorem 27. Let 𝐼 βŠ† 2N be a proper ideal in N and let (𝑋, 𝑑)
be a separable metric space. Then for each sequence {𝐴 𝑛 } βŠ‚ 𝑋
one has πΌπ‘Š(Ξ› {𝐴 𝑛 } ) βŠ‚ πΌπ‘Š(Ξ“{𝐴 𝑛 } ).
Proof. Let 𝐴 ∈ πΌπ‘Š(Ξ› {𝐴 𝑛 } ). Then, there exists 𝑀 = {π‘š1 <
π‘š2 < β‹… β‹… β‹… } βŠ‚ N such that 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– < π‘šπ‘–+1 , 𝑖 ∈
N} βˆ‰ 𝐼 and
lim 𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑 (π‘₯, 𝐴) .
π‘˜β†’βˆž
(47)
6
Abstract and Applied Analysis
According to (47), there exists π‘˜0 ∈ N such that for each πœ€ > 0,
for each π‘₯ ∈ 𝑋 and π‘˜ > π‘˜0 , |𝑑(π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑(π‘₯, 𝐴)| < πœ€. Hence,
󡄨
󡄨
{π‘˜ ∈ N : 󡄨󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨󡄨 < πœ€}
βŠ‡ 𝑀 \ {π‘š1 , π‘š2 , . . . , π‘šπ‘˜π‘œ } .
(48)
which means that 𝐴 ∈ πΌπ‘Š(Ξ“{𝐴 𝑛 } ).
Theorem 28. Let 𝐼 βŠ† 2N be a proper ideal in N and let (𝑋, 𝑑)
be a separable metric space. Then for each sequence {𝐴 𝑛 } βŠ‚ 𝑋
one has πΌπ‘Š(Ξ“{𝐴 𝑛 } ) βŠ† 𝐿 {𝐴 𝑛 } .
Proof. Let 𝐴 ∈ πΌπ‘Š(Ξ“{𝐴 𝑛 } ). Then for each πœ€ > 0 and for each
π‘₯ ∈ 𝑋, we have
󡄨
󡄨
{𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 < πœ€} βˆ‰ 𝐼.
(50)
Let
(51)
for 𝑛 ∈ N. {𝐾𝑛 }∞
𝑛=1 is decreasing sequence of infinite subsets
of N. Hence 𝐾 = {𝑛 = (𝑛𝑖 ) : 𝑛𝑖 < 𝑛𝑖+1 , 𝑖 ∈ N} βˆ‰ 𝐼 such that
lim𝑛 β†’ ∞ 𝑑(π‘₯, 𝐴 𝑛𝑖 ) = 𝑑(π‘₯, 𝐴) which means that 𝐴 ∈ 𝐿 {𝐴 𝑛 } .
Theorem 29. Let 𝐼 βŠ† 2N a proper ideal in N, (𝑋, 𝑑) a separable
metric space, and 𝐴 π‘˜ , π΅π‘˜ nonempty subsets of 𝑋. If {𝐴 π‘˜ } =
{π΅π‘˜ } 𝐼-a.a.k for π‘˜ ∈ N, then πΌπ‘Š(Ξ“{𝐴 π‘˜ } ) = πΌπ‘Š(Ξ“{π΅π‘˜ } ) and
πΌπ‘Š(Ξ› {𝐴 π‘˜ } ) = πΌπ‘Š(Ξ› {π΅π‘˜ } ).
Proof. If {𝐴 π‘˜ } = {π΅π‘˜ } a.a.k for π‘˜ ∈ N, then
𝐾 := {π‘˜ ∈ N : 𝐴 π‘˜ =ΜΈ π΅π‘˜ } ∈ 𝐼
(52)
Let 𝐴 ∈ πΌπ‘Š(Ξ“{𝐴 π‘˜ } ). For each πœ€ > 0 and for each π‘₯ ∈ 𝑋 we have
󡄨
󡄨
{π‘˜ ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 < πœ€} βˆ‰ 𝐼,
(53)
βˆ€πœ€ > 0. If {𝐴 π‘˜ } = {π΅π‘˜ } 𝐼-a.a.k, then {π‘˜ ∈ N : |𝑑(π‘₯, π΅π‘˜ ) βˆ’
𝑑(π‘₯, 𝐴)| < πœ€} βˆ‰ 𝐼 which means that 𝐴 ∈ πΌπ‘Š(Ξ“{π΅π‘˜ } );
hence πΌπ‘Š(Ξ“{𝐴 π‘˜ } βŠ‚ πΌπ‘Š(Ξ“{π΅π‘˜ } ). Similarly we can also prove that
πΌπ‘Š(Ξ“{π΅π‘˜ } ) βŠ‚ πΌπ‘Š(Ξ“{𝐴 π‘˜ } . So we have πΌπ‘Š(Ξ“{𝐴 π‘˜ } = πΌπ‘Š(Ξ“{π΅π‘˜ } ).
Now, we show that πΌπ‘Š(Ξ› {𝐴 π‘˜ } ) = πΌπ‘Š(Ξ› {π΅π‘˜ } ). Let 𝐴 ∈
πΌπ‘Š(Ξ› {𝐴 π‘˜ } ). Then there exists a set 𝑀 = {π‘š = (π‘šπ‘– ) : π‘šπ‘– <
π‘šπ‘–+1 , 𝑖 ∈ N} βŠ‚ N such that 𝑀 βˆ‰ 𝐼 and
lim 𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) = 𝑑 (π‘₯, 𝐴) ,
π‘˜β†’βˆž
𝑀 = {π‘˜ : π‘˜ ∈ 𝑀 and 𝐴 π‘˜ =ΜΈ π΅π‘˜ }
(54)
βˆͺ {π‘˜ : π‘˜ ∈ 𝑀 and 𝐴 π‘˜ = π΅π‘˜ } ,
𝑀 βˆ‰ 𝐼, and hence {π‘˜ : π‘˜ ∈ 𝑀 and 𝐴 π‘˜ = π΅π‘˜ } βˆ‰ 𝐼. Then there
exists
𝑃 = {𝑝 = (𝑝𝑖 ) : 𝑝𝑖 < 𝑝𝑖+1 , 𝑖 ∈ N} βˆ‰ 𝐼
lim 𝑑 (π‘₯, π΅π‘π‘˜ ) = 𝑑 (π‘₯, 𝐴)
π‘˜β†’βˆž
Then, the set on the right hand side of (48) does not belong
to 𝐼; therefore
󡄨
󡄨
(49)
{π‘˜ ∈ N : 󡄨󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 π‘šπ‘˜ ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨󡄨 < πœ€} βˆ‰ 𝐼
󡄨 1
󡄨
𝐾𝑛 := {𝑛 ∈ N : 󡄨󡄨󡄨𝑑 (π‘₯, 𝐴 𝑛 ) βˆ’ 𝑑 (π‘₯, 𝐴)󡄨󡄨󡄨 < }
𝑛
such that
(55)
(56)
which means that 𝐴 ∈ πΌπ‘Š(Ξ› {π΅π‘˜ } ). Similarly we can also prove
that πΌπ‘Š(Ξ› {π΅π‘˜ } ) βŠ‚ πΌπ‘Š(Ξ› {𝐴 π‘˜ } ). Therefore we have πΌπ‘Š(Ξ› {𝐴 π‘˜ } ) =
πΌπ‘Š(Ξ› {π΅π‘˜ } ).
References
[1] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, vol. 2,
Birkhäuser, Boston, Mass, USA, 1990.
[2] M. Baronti and P. L. Papini, β€œConvergence of sequences of sets,”
in Methods of Functional Analysis in Approximation Theory, vol.
76, pp. 135–155, Birkhäuser, Basel, Switzerland, 1986.
[3] G. Beer, β€œConvergence of continuous linear functionals and
their level sets,” Archiv der Mathematik, vol. 52, no. 5, pp. 482–
491, 1989.
[4] G. Beer, β€œOn convergence of closed sets in a metric space
and distance functions,” Bulletin of the Australian Mathematical
Society, vol. 31, no. 3, pp. 421–432, 1985.
[5] J. Borwein and J. Vanderwerff, β€œDual Kadec-Klee norms and the
relationships between Wijsman, slice, and Mosco convergence,”
The Michigan Mathematical Journal, vol. 41, no. 2, pp. 371–387,
1994.
[6] O. Kisi and F. Nuray, β€œOn π‘†πœ†πΏ (I)-asymptotically statistical
equivalence of sequences of sets,” Mathematical Analysis, vol.
2013, Article ID 602963, 6 pages, 2013.
[7] Y. Sonntag and C. ZaΜ†linescu, β€œSet convergences: an attempt
of classification,” Transactions of the American Mathematical
Society, vol. 340, no. 1, pp. 199–226, 1993.
[8] R. A. Wijsman, β€œConvergence of sequences of convex sets, cones
and functions,” Bulletin of the American Mathematical Society,
vol. 70, pp. 186–188, 1964.
[9] R. A. Wijsman, β€œConvergence of sequences of convex sets, cones
and functions. II,” Transactions of the American Mathematical
Society, vol. 123, pp. 32–45, 1966.
[10] R. C. Buck, β€œGeneralized asymptotic density,” The American
Journal of Mathematics, vol. 75, pp. 335–346, 1953.
[11] H. Fast, β€œSur la convergence statistique,” Colloquium Mathematicae, vol. 2, pp. 241–244, 1951.
[12] I. J. Schoenberg, β€œThe integrability of certain functions and
related summability methods,” The American Mathematical
Monthly, vol. 66, pp. 361–375, 1959.
[13] P. Kostyrko, M. Mačaj, T. Šalát, and M. Sleziak, β€œπΌ-convergence
and extremal 𝐼-limit points,” Mathematica Slovaca, vol. 55, no.
4, pp. 443–464, 2005.
[14] P. Kostyrko, T. Šalát, and W. Wilczyński, β€œπΌ-convergence,” Real
Analysis Exchange, vol. 26, no. 2, pp. 669–685, 2000.
[15] A. R. Freedman and J. J. Sember, β€œDensities and summability,”
Pacific Journal of Mathematics, vol. 95, no. 2, pp. 293–305, 1981.
[16] F. Nuray and B. E. Rhoades, β€œStatistical convergence of sequences of sets,” Fasciculi Mathematici, no. 49, pp. 87–99, 2012.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014