Calhoun: The NPS Institutional Archive DSpace Repository Faculty and Researchers Faculty and Researchers Collection 2014 k-Vector range searching techniques Mortari, Daniele Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/41061 Downloaded from NPS Archive: Calhoun ! " #$ %$ & " & ' ( ! "# "! * # $%&%' $&' ( ) % " ! ( ( % ( % * ) * % # # # " "! # # ) %# * + , -% . / 0 $&' ( 1# 2 3 4 ! %# 5 * ! " ) * + "+*)& +,* -./- 0 1 Æ 2 3 * 4 * ! , * .%# $$#5. , ) 6# 0 7 Æ 7 8 * 0 1 9 1+:7 1 9+ -5-;5 6 1# / " 6 ) 74 / , 8! 77 %# * # " ) " %# * " 9 " ) " ! ! " ! % " # * : " " # "! ;<! )*= <) ! * >! + <) # " " " 9 <! ( ? " # " " "! * * %# 9 % # # " @ A % ) A % # A % # A A A / A <) " B # # ) / # A ! A @ A / 7 " $ " ) ! A 7 A ! "! # ! / ( ) * " A @ A A 7 @ A A / # " " A @ $ # # # 0.9 0.8 y b Sorted Database s=y(I) 0.7 0.6 y a 0.5 0.4 0.3 1 0.2 2 0 3 2 4 2 3 5 6 7 3 5 K−vector Elements $ , C/ %# 9 8 6 8 10 9 10 D $ ( ! $ %# " ) 9 *! ! # %# # 7 . . 2 3 5 ? 7 & %# " # " / $ # A & # 1 ) ( A %# A . # A 0 A ? " @ / $ # ! # A 0 * # # " ! " " / # ! " ( A 7 " A . " C* .%0 * / # " "! A 0 A 5 * A 0 A ? ) / # # 27E ""! " @ #! ) / " @ / " / ! A A B / " / ) ( ( A A # # 2 65535 = Number of data; 65535 = K−vector entries; Mean = 1.0032; h = 0 4000 3500 Frequency 3000 2500 2000 1500 1000 500 0 0 1 2 3 4 5 Number of Elements Outside Range $ , B $ " 7 A " A " " / ) # # ! " / "! / 6 " "! * * ) / %# <) < = "%& 0 ) # # ! 322.2% %# $ " 7 777 # ) # " 77. / # A 322.2 322.2 # % / A 77772 %# # # # ) #! ! " " " ) " # "! * %# "! ( ) ) )" " A # A A A. A0 A2 A3 A4 A5 A? A7 A 7 . 0 2 3 4 5 ? 7 % % . % 0 % 2 % 3 % % % % . % % 0 % . % % % % % % . % % 0 % % % % % % % % . )" , ' $ ) ! " A @ @ A A @ " # ) A 7 @ A @ A A @ 3 / C* @ %' " " "! 4 @ @ ) # # " >%%5% ? @ # @ A ? B # @ 2 %# 7 "! A @ @ @ A @ @ "! " G A @ A @ ) / " / " A G A @ $ #! " # A @ ) / " * ! ! @ A @ . F 65535 = Number of data; 3642 = K−vector entries; Mean = 18.052; h = 17 500 450 400 350 Frequency 300 250 200 150 100 50 0 0 5 10 15 20 25 30 35 Number of Elements Outside Range $ ., B $ . # " %# 40 45 50 A 4 A 4 ) # " 572 A @ 57774 " $ 0 D-: "! .27>9 -D%- >)< %# # # ! # ) %# D! %# " H ! " # ) 9 " %# ! ! "! $ 0 / # 2 777 02 777 " A 7 * 3 2 10 Consumed Time to Construct the k−vector (sec) h=0 h=1 1 10 h=2 h=5 h=4 h=6 h=3 0 10 1 2 3 4 Database Length n (× 10,000) $ 0, ) %# 5 6 # %# 7 ) # 02 777 # A %# ! " * ! %# " " " ! " # " I $ 2 ( D-: 7 777 %# # # ) # # " # ! D-: ! " $ / D-: A 7 ( 33 A 3 D-: 7 777 * ..4 ) # # " 3 A 7 A 3 "! " 74 " 4E $ 3 27 777 %# ! * #! ! " & D-: * 4 3.4 h=6 3.3 h=5 CPU time for 10000 tests 3.2 h=4 3.1 3 h=3 2.9 h=2 2.8 h=1 2.7 h=0 2.6 0 1 2 3 4 Database Length n (× 10,000) 5 6 $ 2, D-: ) 7 777 # 7 "! ) %# * " 277>9 -D%- $ 4 D-: ( "! ! A A ) % # A 7 A 2 # " # "! ) "! 7 777 " " 54 A " " 434 A ) %# * * " 0. " 4 A 2 $ 5 " "! A7 %# % . D-: * "! "! A A2 A7 #! ) 0 20 32 2.2 * " ! " ) # " 5 140 h=0 Memory Required for K−vector (Kbytes) 120 100 80 60 40 20 h=10 0 0.24 0.26 0.28 0.3 0.32 Range Searching Average Time in 50000 tests (msec) 0.34 0.36 $ 3, >! " " > * " ! # $ <) ! ! " I %# * " ! / ! " ( ( ( %# ! " %# ) %# ! :! ) ) "! ;! #= ! " # F ;! #= %# 9 " %" %# " 9 9 # 1C)1J " " C* 0 C* ? " # A @ % " : @ C* 0 A @ @ ? A @ @ 5 2 10 Consumed Time for 10,000 Range Searchings (sec) Binary 1 10 k−vector with h=5 k−vector with h=0 0 10 0 1 2 3 4 Database Length n (× 10,000) 5 6 7 $ 4, D-: ) D ! " / ! # # " / ) ! "! * ) KCC)1J ! # / A " ! @ %# @ / " "! "# %# ! ( %# 9 # " I# # " " ! %# ) ! 9 %# ) 9 "! % " * " # " 9 7 55 h=0 50 45 Binary/( k−vector) Speed Ratio h=5 40 35 30 25 20 15 10 0 1 2 3 4 Database Length n (× 10,000) 5 6 7 $ 5, D-: ) D ! " " " # # %# ) # # " %# %# $ ? %# ) # %# # / " ! # " " ! 27 77 577 " # ) " %# # %# ?77 %# %# %# %# 1 "( C# " 9 %# %# " " %# " %# " " >" %# ! * " # ) " * J" # 7 $! H / %# " %# # # ( " 900 800 Sorted Database s = y( I ) 700 600 500 400 300 200 100 0 0 10 20 30 $ ?, 40 50 Indices 60 70 80 # * # 90 100 %# ! %# * / # % ) %# # # # " "! * 7 A 7772 D! " " H / "# # # " %# $ 7 # 7 / %# * " " # ! 7 / 8 / ) >" # $ # ) ( # %# ) # %# * ) "! ( # # 1 0.9 0.8 Trigonometric sin function 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 $ 7, ) %# 40 50 Angle (deg) 60 70 80 90 $ $ - "! 9 * ) " " %# # " " / ! * %# "! %# %# ;"! = % * * 7 27 " "! ;!= # ! " $! %# %# ) * " % " * "% # % # ( " " ! " ) % % ! "%# ) 6 74 1# / %# ! "! + / 8! 77 ( " * . "! %# 1 0.9 0.8 Trigonometric sin function 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 10 20 30 $ , : 40 50 Angle (deg) 60 70 80 90 ' $ $ ' " ) ( ! D ! > K ; $ &%< K ! " %K )* F $&' )( = # ' ?. - 5?.%?7. - ?3%25 / I $ > > )L $" %2 ??3 > K ;% - = ' 02 1 %8 ??4 4?%?0 . > K ;-%, 1 - = % # ' 7 - 32%40 - ??%5 ? I $ > > <(% D& $" 4%7 ??? 0 0 > K 8( 8 ;-% - >% $ ' )( = # - ??%0.4 I ! D J M 2%? ??? 2 > K -( )D 8( 8 ;) > % K ! : )( = # % ' ?? - 5.?%527 - ?5%2? 5 I $ > > >! D $" ?% ??5 3 > K > ; - > "! > KJ) = # % ' 7 - 42%50 - ??%5 ? I $ > > <( D& $" 4%7 ??? 4 > ; D ' >, 9 K = )! C :#! 8! 0 ??? 5 8 J M NB -( D) 8( 8 8 18 > K ;%%, - C D 1 - = - 77%770 777 J O D D <( D& $" %3 777 ? <! 8 ( ;$ = 7 J" J B # D $ ; ! ) * -" = > 8 1 ' 4 ?57 55.%5?. 2
© Copyright 2026 Paperzz