One-Shot Quantum Information Theory I: Entropic Quantities Nilanjana Datta University of Cambridge,U.K. In Quantum information theory, initially one evaluated: optimal rates of info-processing tasks, e.g., data compression, transmission of information through a channel, etc. under the assumption of an “asymptotic, memoryless setting” Assume: information sources & channels are memoryless They are available for asymptotically many uses E.g. Transmission of classical information classical info N Noisy quantum channel Optimal rate (of classical information transmission): classical capacity C (N ) maximum number of bits transmitted per use of N memoryless: there is no correlation in the noise acting on successive inputs N n : n successive uses of the channel; independent “asymptotic, memoryless setting” To evaluate C (N ) : classical info x En x( n ) input N n n N uses n encoding One requires : prob. of error C (N ) : N n ( x( n ) ) channel output decoding POVM (n) e 0 p Dn x' as n Optimal rate of reliable information transmission Entropic Quantities Optimal rates of information-processing tasks in the “asymptotic, memoryless setting” Compression of Information: Memoryless quantum info. source Data compression limit: S ( ) ,H [Schumacher] von Neumann entropy Info Transmission thro' a memoryless quantum channel N [Holevo, Schumacher, Westmoreland] Classical capacity C (N ) --given in terms of the Holevo capacity ; Quantum capacity Q (N ) [Lloyd, Shor, Devetak] --given in terms of the coherent information ; These entropic quantities are all obtainable from a single parent quantity; Quantum relative entropy: For , 0; Tr 1 D( || ) : Tr log Tr log supp supp e.g. Data compression limit: S ( ) : Tr log D( || I ) ( I ) In real-world applications “asymptotic memoryless setting” not necessarily valid In practice: information sources & channels are used a finite number of times; there are unavoidable correlations between successive uses (memory effects) Hence it is important to evaluate optimal rates for a finite number of uses (or even a single use) of an arbitrary source or channel Evaluation of corresponding optimal rates: One-shot information theory One-shot information theory classical info x E x N single use N input encoding One-shot error classical capacity C (N) (1) : N(x ) channel output D x' decoding POVM max. number of bits that can be transmitted on a single use of N Prob. of error: pe for some 0, In the one-shot setting too… Capacities, data compression limit etc. are -- given in terms of entropic quantities Min-/max-/0- entropies (R.Renner) Obtainable from certain (generalized) relative entropies Parent quantities for optimal ‘rates’ in the one-shot setting D0 ( || ) Dmax ( || ) Max-relative entropy 0-relative Renyi entropy D ( || ) Dmin ( || ) Min-relative entropy “super-parent”: Quantum Renyi Divergence (sandwiched Renyi relative entropy) [Wilde et al; Muller-Lennert et al] In the one-shot setting too… Capacities, data compression limit etc. are -- given in terms of entropic quantities Min-/max- entropies (R.Renner) Obtainable from certain (generalized) relative entropies Dmax ( || ) D0 ( || ) D( || ) 12 ? [ND, F.Leditzky] D ( || ) 1 Dmin ( || ) relative Renyi entropy Quantum Renyi Divergence (sandwiched Renyi entropy) [Wilde et al; Muller-Lennert et al] D ( || ) if [ , ] 0 Outline Semidefinite programming Mathematical Tool: Definitions of generalized relative entropies: Dmax ( || ), D0 ( || ), Dmin ( || ) Properties & operational significances of them Their “smoothed” versions Their children: the min-, max- and 0-entropies ( || ) The “super-parent” : Quantum Renyi Divergence D Relationship between D ( || ) & D0 ( || ) Notations & Definitions A HA quantum system Hilbert space B (H ) : algebra of linear operators acting on H P (H ) : set of positive operators…… D (H ) P (H ) : set of density matrices (states) : B (HA ) B (HB ) : A B Linear maps: If * : B A * Tr B ( A ) Tr (B ) A its adjoint map: defined through Quantum operations (quantum channels) : linear CPTP map Mathematical Tool Semi-definite programming (SDP) A well-established form of convex optimization The objective function is linear in an input constrained to a semi-definite cone Efficient algorithms have been devised for its solution Mathematical Tool (formulation:Watrous) (2) Semi-definite programming (SDP) (, A, B); A, B P (H ), : P (HA ) P (HB ) positivity-preserving map Primal problem Dual problem minimize Tr( AX ) maximize subject to ( X ) B; X 0; subject to Optimal solutions: Tr( BY ) * (Y ) A; Y 0; IF Slater’s duality condition holds. Outline Mathematical Toolkit: Semidefinite programming Definitions of generalized relative entropies: Dmax ( || ), D0 ( || ), Dmin ( || ) Definitions of generalized relative entropies D (H ), P (H ); supp supp ; Max-relative entropy [ND] Dmax ( || ) : inf : 2 log max ( 1/2 1/2 1/2 2 I 1/2 ) Min-relative entropy [Dupuis et al] Dmin ( || ) : 2 log || ||1 2 log F ( , ) fidelity Definitions of generalized relative entropies D (H ), P (H ); supp supp ; 0-relative Renyi entropy D0 ( || ) : log Tr ( ) where contd. denotes the projector onto supp -relative Renyi entropy ( 1) 1 1 D ( || ) : log Tr ( ) 1 lim D ( || ) =D0 ( || ) 0 Properties of generalized relative entropies Positivity: If , D (H ), D* ( || ) 0 for * max, 0, min just as D( || ) Data-processing inequality: D* ( ( ) || ( )) D* ( || ) for any CPTP map Invariance under joint unitaries: D* (U U || U U ) D* ( || ) † † for any unitary operator U Interestingly, D0 ( || ) Dmin ( || ) D( || ) Dmax ( || ) Operational interpretation of the max-relative entropy Multiple state discrimination problem: its state & told a quantum system Bob with prob. 1 2 1 m 1 m m He does measurements to infer the state: POVM E1 ,.., Em : 0 Ei I ; m E i 1 i I His optimal average success probability: p * succ : max E1 ,.., Em m Tr E m 1 i 1 i i Theorem 3 [M.Mosonyi & ND]: The optimal average success probability in this multiple state discrimination problem is given by: p * succ 1 m min max 1i m Dmax ( i || ) 2 Let p * succ i Sketch of proof: m basis in : i 1 : max E1 ,.., Em C m Let 1 m : i i i m i 1 P (Cm H ) m Tr E m 1 max m Ei i1:POVM i 1 i i m Tr[ ( i i Ei )] i 1 m Y i i Ei P (Cm H ); i 1 TrCm Y max m Y P ( C H ); Tr m Y IH C Tr Y Ei IH ; i Let p * succ i Sketch of proof: m basis in : i 1 : max E1 ,.., Em C m Let 1 m : i i i m i 1 P (Cm H ) m Tr E m 1 max m Ei i1:POVM i 1 i i m Tr[ ( i i Ei )] i 1 m Y i i Ei P (Cm H ); i 1 TrCm Y max m Y P ( C H ); Tr m Y IH C Tr Y Ei IH ; i Let p * succ i Sketch of proof: m basis in : i 1 : max E1 ,.., Em C m Let 1 m : i i i m i 1 P (Cm H ) m Tr E m 1 max m Ei i1:POVM i 1 i i m Tr[ ( i i Ei )] i 1 m Y i i Ei P (Cm H ); i 1 TrCm Y max m Y P ( C H ); Tr m Y IH C Tr Y Ei IH ; i SDP duality condition holds [Koenig, Renner, Schaffner] Primal problem Dual problem minimize Tr( AX ) maximize subject to ( X ) B; X 0; subject to minimize subject to Tr X I Cm X X 0; Tr( AX ) Tr( IH X ) Tr X Tr( BY ) * (Y ) A; Y 0; max m Y P ( C H ); Tr m Y IH Tr Y C * B ; A IH ; =TrCm * =TrCm : P (Cm H ) P (H ) : P (H ) P (Cm H ); ( X ) I Cm X Sketch of proof contd: * psucc min Tr X : X 0, I Cm 1 m X ; : i i i m i 1 min Tr X : X 0, i mX i 1, 2,.., m I C m Tr X X mX ; TrX mTrX TrX m X 1 1 min Tr mX : X 0, i X i 1, 2,.., m mi i i i i X m m i 1 i 1 X ; X =TrX ; TrX 1 i X i minm : 0, i i 1, 2,.., m m D (H ) inf : i 2 D ( || ) 1 m min max 1iM 2 Dmax ( i || ) max i Operational interpretation of D0 ( || ) : log Tr ( ) Quantum binary Bob receives a state hypothesis testing: (null hypothesis) or (alternative hypothesis) He does a measurement to infer which state it is POVM A [ ] Possible errors Type I Type II Error probabilities ( I A) [ ] & inference actual state Tr(( I A) ) Type I Tr( A ) Type II Suppose (POVM element) A Prob(Type I error) Prob(Type II error) Tr( A ) Tr( ) Tr(( I A) ) 0 Bob never infers the state to be BUT when it is D0 ( || ) : log Tr Hence 0 2 D0 ( || ) = Prob(Type II error |Type I error = zero) (POVM element) Suppose A Prob(Type I error) Prob(Type II error) Tr( A ) Tr( ) Tr(( I A) ) 0 Bob never infers the state to be BUT In fact, when it is D0 ( || ) : log Tr min Prob(Type II error |Type I error = zero) * 0 2 D0 ( || ) Smoothed relative entropies What if Bob has a single copy of the state but one allows *| min Tr (A ) non-zero but small value of the Prob(Type I error) 0 i.e., let 0A Ifor some 0. Tr (A ) 1 ? D0 ( || ) log * | 0 log Tr * | log min Tr (?A ) * | 0 A I Tr (A ) 1 Tr(( I A) ); 0 Tr (A ) Tr ( ) 1 For choose A such that Tr (A ) 1 D0 ( || ) log * | max Hypothesis testing relative entropy [Wang & Renner] 0 A I Tr (A ) 1 log(Tr (A )) DH ( || ) D Compare operational significances of H ( || ) & D ( || ) D( || ) arises in asymptotic binary hypothesis testing Suppose Bob is given many ( n) identical copies of the state He receives *( n ) | ( n ) : [0,1) : n n Bob’s POVM An , ( I An ) Minimum type II error when type I error 1 *( n ) lim log | ( n ) D ( || ) n n [Quantum Stein’s Lemma] Operational interpretations in binary hypothesis testing DH ( || ) D( || ) One-shot setting; Asymptotic memoryless setting; Single copy of the state: Multiple copies of the state: log * | 1 *( n ) lim log | ( n ) n n [0,1) : (Bob receives identical copies of the state: n or n ) Smooth max-relative entropy 0. Dmax ( || ) Dmax ( || ) : min B ( ) B ( ) : 0, Tr 1: F ( , ) 1 2 fidelity Dmax ( || ) & 2 DH ( || ) can both be formulated as SDPs Outline Mathematical Toolkit: Semidefinite programming Definitions of generalized relative entropies: Dmax ( || ), D0 ( || ), Dmin ( || ) Properties & operational significances of them Their children: the min-, max- and 0-entropies Dmax ( || ), D0 ( || ) & Dmin ( || ) as parent quantities for other entropies Just as: von Neumann entropy S ( ) D( || I ) ( I ) H 0 ( ) : D0 ( || I ) H min ( ) : Dmax ( || I ) log max log rank( ) Hmax (): Dmin ( || I ) 2 log Tr [Renner] Other min- & max- entropies For a bipartite state AB : Conditional entropy A B S ( A | B) S ( AB ) S ( B ) max D( AB || I A B ) B Conditional min-entropy H min ( A | B) : max Dmax ( AB || I A B ) B Max-conditional entropy H max ( A | B) : max Dmin ( AB || I A B ) B 0-conditional entropy H 0 ( A | B) : max D0 ( AB || I A B ) B They have interesting mathematical properties: e.g. Duality relation: [Koenig, Renner, Schaffner]: For any purification ABC of a bipartite state AB : H max ( A | B) H min ( A | C ) (just as for the von Neumann entropy): H ( A | B) H ( A | C ) -- and -- interesting operational interpretations: Operational interpretations Conditional min-entropy maximum achievable singlet fraction Conditional max-entropy [Koenig, Renner, Schaffner] decoupling accuracy Conditional 0-entropy one-shot entanglement cost under LOCC [F.Buscemi, ND] Operational interpretations contd. Conditional min-entropy AB 1 d d i 1 Max. achievable singlet fraction iA iB HA HB : AB AB AB 2 H min ( A| B ) max. entangled state [Koenig, Renner, Schaffner] d max F ((id A B ) AB ), AB B :CPTP Given the bipartite state with the singlet state quantum operations fidelity AB , it is the maximum overlap AB , that can be achieved by local B on the subsystem B. 2 Operational interpretations contd. Conditional max-entropy Distance of AB , Decoupling accuracy from a product state A B no correlations; I A dA 2 completely mixed state on HA decoupled [Koenig, Renner, Schaffner] H max ( A| B ) d A max F AB , A B B 2 fidelity From the cryptographic point of view: How random A appears from the point of view of an adversary who has access to B. Operational interpretations contd. Conditional 0-entropy one-shot entanglement cost One-shot Entanglement Dilution Bell states Bell m : LOCC Alice AB Bob One-shot entanglement cost E ( AB ) : min m (1) C = minimum number of Bell states needed to prepare a single copy of AB via LOCC Operational interpretations contd. Theorem [F.Buscemi & ND]: One-shot perfect entanglement cost of a bipartite state AB under LOCC: E ( AB ) min H 0 ( A | R) E (1) C E Pure-state ensembles: E pi , and i AB i conditional 0-entropy i i p AB ; AB i AB i E i i RAB pi iR iR AB AB i E E RA TrB RAB , classical-quantum state Outline Mathematical Toolkit: Semidefinite programming Definitions of generalized relative entropies: Dmax ( || ), D0 ( || ), Dmin ( || ) Properties & operational significances of them and their children: the min-, max- and 0-entropies Their “smoothed” versions ( || ) The “super-parent” : Quantum Renyi Divergence D D0 ( || ) Dmax ( || ) Max-relative entropy O-relative Renyi entropy D ( || ) “super-parent”: Quantum Renyi Divergence (sandwiched Renyi entropy) [Wilde et al; Muller-Lennert et al] Dmin ( || ) Min-relative entropy “super-parent”: Quantum Renyi Divergence (sandwiched Renyi entropy) [Wilde et al; Muller-Lennert et al] D0 ( || ) Dmax ( || ) D( || ) D ( || ) 1 Dmin ( || ) 12 D ( || ) if [ , ] 0 Quantum Renyi Divergence D (H ), P (H ); supp supp ; For (0,1) (1, ) : 1 D ( || ) : log Tr ( ) ; 1 where Note: If Tr ( ) 1 2 [ , ] 0 Tr ( D ( || ) 2 ) 2 1 Tr 1 log Tr ( 1 ) 1 2 Tr D ( || ) -relative Renyi entropy 1 Quantum Renyi Divergence D (H ), P (H ); supp supp ; For (0,1) (1, ) : 1 D ( || ) : log Tr ( ) ; 1 where 1 2 2 1 [ , ] 0 Note: If Non-commutative generalization of D ( || ) 2 2 Tr ( ) Tr ( ) Tr Tr 1 D ( || ) 1 log Tr ( 1 ) 1 D ( || ) -relative Renyi entropy Two properties of Quantum Renyi Divergence (1) Data-processing inequality; For [Frank & Lieb; 1 , 2 ( ( ) || ( )) D ( || ) D Beigi 2013] : CPTP map holds also for Dmin ( || ), D( || ), Dmax ( || ) 1 2 1 Two properties of Quantum Renyi Divergence (1) Monotonicity under CPTP maps [Frank & Lieb; Beigi 2013] : For D ( ( ) || ( )) D ( || ) 1 , 2 holds also for Dmin ( || ), D( || ), Dmax ( || ) 1 1, (2) Joint convexity: For 2 [Frank & Lieb] D ( p i || p i ) pi D ( i || i ) i i i i i Dmin ( || ) , D( || ) Dmax ( || ) is quasi-convex: [ND] holds also for Note: Dmax ( pi i || pi i ) max Dmax ( i || i ) i i 1i n What about D0 ( || ) ? Outline Mathematical Toolkit: Semidefinite programming Definitions of generalized relative entropies: Dmax ( || ), D0 ( || ), Dmin ( || ) Properties & operational significances of them Their children: the min-, max- and 0-entropies Their “smoothed” versions ( || ) The “super-parent” : Quantum Renyi Divergence D Relationship between D ( || ) & D0 ( || ) & its implication Theorem: For , [ND, F.Leditzky] If 0, Tr 1; if supp supp ; ( || ) =D ( || ) 0.......(1) then lim D 0 0 supp supp , then (1) does not necessarily hold D ( || ) : Quantum Renyi Divergence Dmax ( || ) D0 ( || ) : D0 ( || ) 0-relative Renyi entropy Dmin ( || ) D ( || ) D( || ) D ( || ) if [ , ] 0 Theorem: For , [ND, F.Leditzky] If 0, Tr 1; if supp supp ; ( || ) =D ( || ) 0.......(1) then lim D 0 0 supp supp , then (1) does not necessarily hold Proof (key steps): supp supp : D ( || ) D ( || ) 0. (1) If lim D D ( || ) D0 ( || ).....(a ) 0 ( || ) lim 0 (Araki-Lieb-Thirring inequality) (2) If supp supp : lim D ( || ) D0 ( || )...(b) (a ) & (b) (1) 0 if supp supp ; (a variant of the Pinching lemma) Proof of the fact: If supp supp , then lim D ( || ) =D0 ( || ) 0 does not necessarily hold A simple counterexample: 1 0 1 c ; 0 0 c 1 , 0, c (0,1). , 0. D0 ( || ) 0 lim D ( || ) = - log(1 c) 0; 0 Summary Generalized relative entropies: Dmax ( || ), D0 ( || ), Dmin ( || ) Properties & some operational significances Dmax ( || ) :in multiple state discrimination, D0 ( || ) : in binary hypothesis testing Their “smoothed” versions; Their children: D0 ( || ) DH ( || ) the min-, max- and 0-entropies Operational significances of conditional entropies ( || ) The “super-parent” : Quantum Renyi Divergence D ( || ) & D ( || ) Relationship between D 0 Thank you! Thanks also to: F.Buscemi, F.Brandao, M-H.Hsieh, F.Leditzky, M.Mosonyi, R.Renner, T.Rudolph,
© Copyright 2025 Paperzz