Proper Orthogonal Decomposition:
Theory and Reduced-Order Modeling
Stefan Volkwein
University of Konstanz, Department of Mathematics and Statistics, Numerics & Optimization Group
Projection Based Model Reduction:
RB Methods, POD, and Low Rank Tensor Approximations, November 23-29, 2014
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
1 / 29
Introduction
Motivation
Motivation for our Research Areas [Grimm, Gubisch, Iapichino, Mancini, Rogg, Trenz, V., Wesche]
Problem: time-variant, nonlinear, parametrized PDE systems
Efficient and reliable numerical simulation in multi-query cases
→ finite element or finite volume discretizations too complex
Multi-query examples
fast simulation for different parameters on small computers
parameter estimation, optimal design and feedback control
→ usage of a reduced-order S URROGATE M ODEL
Time-variant, nonlinear coupled PDEs
→ methods from linear system theory not directly applicable
Nonlinear model-order reduction
→ proper orthogonal decomposition and reduced-basis method
Error control for reduced-order model
→ new a-priori and a-posteriori error analysis
PDE — Partial Differential Equation
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
2 / 29
Introduction
Singular Value Decomposition (SVD)
Singular Value Decomposition (SVD)
Given vectors: y1 , . . . , yn ∈ Rm
Data matrix: Y = [y1 , . . . , yn ] ∈ Rm×n
Singular value decomposition: U ∈ Rm×m , V ∈ Rn×n orthogonal
D 0
U > YV =
= Σ ∈ Rm×n
0 0
with D = diag (σ1 , . . . , σd ) ∈ Rd×d
Singular values: σ1 ≥ . . . ≥ σd > 0, rank Y = d
Frobenius norm:
kY kF =
m
n
∑ ∑ Yij2
1/2
for Y ∈ Rm×n
i=1 j=1
Approximation quality:
2
kY − Y ` kF =
with Y ` = U
Stefan Volkwein
D`
0
0
0
d
∑
σi2
i=`+1
V > and D` = diag (σ1 , . . . , σ` )
POD: Theory and Reduced-Order Modeling
3 / 29
Introduction
Singular Value Decomposition and Images
d
Approximation kY − Y ` k2F = ∑ σi2 for a given Photo
i=`+1
0,5% der Matrixbasis −> 45% Information
1% der Matrixbasis −> 56% Information
5% der Matrixbasis −> 76% Information
10% der Matrixbasis −> 85% Information
20% der Matrixbasis −> 92% Information
Originalbild
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
4 / 29
Outline of Lecture 1
Outline of Lecture 1
The method of Proper Orthogonal Decomposition (POD)
Reduced-order modeling utilizing the POD method
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
5 / 29
The POD Method
The Method of Proper Orthogonal Decomposition (POD)
Topics:
Definition of a (discrete variant of the) POD basis
Efficient computation of a POD basis
POD for dynamical systems
A continuous variant of the POD basis and asymptotic analysis
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
6 / 29
The POD Method
Discrete Variant of the POD Method
POD as a Minimization Problem
Given multiple snapshots: {yjk }nj=1 ⊂ X , 1 ≤ k ≤ ℘, with a (real) Hilbert space X
Snapshot subspace:
n o
V = span yjk 1 ≤ j ≤ n and 1 ≤ k ≤ ℘ ⊂ X
with dimension d ∈ {1, . . . , min(n℘, dim X )}
Proper Orthogonal Decomposition (POD): for any ` ∈ {1, . . . , d} solve
℘
min
n
`
2
∑ ∑ αj yjk − ∑ hyjk , ψi iX ψi X
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P` )
i=1
k=1 j=1
with positive weights αj
Optimal solution to (P` ): POD basis {ψ̄i }`i=1 of rank `
Orthogonal projection: define P ` : X → V` = span {ψ̄1 , . . . , ψ̄` } ⊂ V by
P`ψ =
`
∑ hψ, ψ̄i iX ψ̄i
i=1
℘
⇒
n
`
2
℘
n
for ψ ∈ X
2
∑ ∑ αj yjk − ∑ hyjk , ψi iX ψi X = ∑ ∑ αj yjk − P ` yjk X
k=1 j=1
Stefan Volkwein
i=1
k=1 j=1
POD: Theory and Reduced-Order Modeling
7 / 29
The POD Method
Discrete Variant of the POD Method
Equivalent POD Formulation
POD as a minimization problem: for any ` ∈ {1, . . . , d} solve
℘
min
n
`
2
∑ ∑ αj yjk − ∑ hyjk , ψi iX ψi X
k=1 j=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P` )
i=1
Orthonormal basis elements: for 1 ≤ j ≤ n and 1 ≤ k ≤ ℘ we have
2
`
`
2
2
k
yj − ∑ hyjk , ψi iX ψi = kyjk kX − ∑ hyjk , ψi iX
X
i=1
i=1
POD as a maximization problem: for ` ∈ {1, . . . , d} solve
℘
max
n
`
2
∑ ∑ αj ∑ hyjk , ψi iX
k=1 j=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ `
i=1
⇒ maximize the first ` Fourier coefficient
Lagrange functional for
(P̂` ):
2
n
`
on average
i=1
i=1
2
) ∈ X`
`
n
∑ αj for all k
j=1
and Λ = ((λij )) ∈ R`×` define
`
∑ ∑ αj ∑ hyjk , ψi iX + ∑ ∑ λij
k=1 j=1
Stefan Volkwein
`
∑ hyjk , ψi iX
for Ψ = (ψ1 , . . . , ψ`
℘
L (Ψ, Λ) =
(P̂` )
i=1 j=1
δij − hψi , ψj iX
POD: Theory and Reduced-Order Modeling
8 / 29
The POD Method
Discrete Variant of the POD Method
Lagrangian Framework in (Infinite Dimensional) Optimization
POD as a maximization problem: for any ` ∈ {1, . . . , d} solve
℘
max
n
`
2
∑ ∑ αj ∑ hyjk , ψi iX
k=1 j=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ `
i=1
(P̂` )
Lagrange functional for (P̂` ): for Ψ = (ψ1 , . . . , ψ` ) ∈ X ` and Λ = ((λij )) ∈ R`×` define
℘
L (Ψ, Λ) =
n
`
2
`
`
∑ ∑ αj ∑ hyjk , ψi iX + ∑ ∑ λij
k=1 j=1
i=1
i=1 j=1
δij − hψi , ψj iX
Necessary optimality conditions: let Ψ̄ = (ψ̄1 , . . . , ψ̄` ) denote a solution to (P̂` )
Constraint qualification condition: there is a Lagrange multiplier Λ̄ = ((¯
λ )) with
ij
∂L
(Ψ̄, Λ̄) = 0 in X for 1 ≤ i ≤ ` and
∂ ψi
∂L
(Ψ̄, Λ̄) = 0 in R for 1 ≤ i, j ≤ `
∂ λij
⇒ first-order necessary optimality conditions for (P̂` )
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
9 / 29
The POD Method
Discrete Variant of the POD Method
First-Order Necessary Optimality Conditions
POD as a maximization problem: for any ` ∈ {1, . . . , d} solve
℘
max
n
`
2
∑ ∑ αj ∑ hyjk , ψi iX
k=1 j=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ `
i=1
(P̂` )
First-order necessary optimality conditions: Ψ̄ = (ψ̄1 , . . . , ψ̄` ) and Λ̄ = ((¯
λij )) satisfy
∂L
(Ψ̄, Λ̄) = 0 in X for 1 ≤ i ≤ ` and
∂ ψi
hψi , ψj iX = δij for 1 ≤ i, j ≤ `
℘
n
Summation operator: define R : X → X as Rψ = ∑ ∑ αj hψ, yjk i yjk for ψ ∈ X
X
k=1 j=1
Theorem: X separable Hilbert space
a) R is linear, compact, selfadjoint and nonnegative
b) there are eigenfunctions {ψ̄i }i∈I and eigenvalues {¯
λi }i∈I with
R ψ̄i = ¯
λi ψ̄i ,
c) {ψ̄i }`i=1 solves (P̂` ) and (P` )
℘
d)
n
`
2
`
¯
λ1 ≥ ¯
λ2 ≥ . . . ≥ ¯
λd > ¯
λd+1 = . . . = 0
℘
n
`
2
∑ ∑ αj ∑ hyjk , ψ̄i iX = ∑ ¯λi , ∑ ∑ αj yjk − ∑ hyjk , ψ̄i iX ψ̄i X = ∑ ¯λi
k=1 j=1
Stefan Volkwein
i=1
i=1
k=1 j=1
i=1
POD: Theory and Reduced-Order Modeling
i>`
10 / 29
The POD Method
Discrete Variant of the POD Method
POD Basis Computation
POD: for any ` ∈ {1, . . . , d} solve
2
℘ n
`
min ∑ ∑ αj yjk − ∑ hyjk , ψi iX ψi k=1 j=1
X
i=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P` )
Eigenvalue problem:
℘
R ψ̄i =
n
∑ ∑ αj hψ̄i , yjk iX yjk = ¯λi ψ̄i for 1 ≤ i ≤ `,
k=1 j=1
¯
λ1 ≥ ¯
λ2 ≥ . . . ≥ ¯
λ` > 0
Approximation quality: POD basis {ψ̄i }`i=1 of rank `
℘
n
`
2
∑ ∑ αj yjk − ∑ hyjk , ψ̄i iX ψ̄i X = ∑ ¯λi
i=1
k=1 j=1
i>`
⇒ for fastly decreasing ¯
λi ’s good approximation quality even for small ` d = dim V
In practical computations: heuristical choice for ` by posing
`
`
λi
∑¯
E (`) =
i=1
λi
∑¯
i∈I
λi
∑¯
=
℘
i=1
n
2
∑ ∑ αj kyjk kX
≈ 99 %
k=1 j=1
⇒ {¯
λi }i>` not required for the computation of E (`)
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
11 / 29
The POD Method
Discrete Variant of the POD Method
Example 1: POD in the Euclidean Space X = Rm
Setting: X = Rm , {yj }nj=1 ⊂ Rm (℘ = 1), Y := [y1 | . . . |yn ] ∈ Rm×n , αj = 1 for 1 ≤ j ≤ n
POD: for any ` ∈ {1, . . . , d} solve
n `
2
min ∑ yj − ∑ yj> ψi ψi m
j=1
R
i=1
s.t. {ψi }`i=1 ⊂ Rm and ψi> ψj = δij , 1 ≤ i, j ≤ `
n
Summation operator: Rψ = ∑ (ψ > yj ) yj = YY > ψ for ψ ∈ Rm
j=1
Symmetric eigenvalue problem:
YY > ψ̄i = ¯
λi ψ̄i for 1 ≤ i ≤ `,
¯
λ1 ≥ ¯
λ2 ≥ . . . ≥ ¯
λ` > 0
Singular value decomposition (SVD): σ̄1 ≥ . . . ≥ σ̄d > 0
Σd
0
Ψ> Y Φ =
=: Σ ∈ Rm×n
0
0
with Ψ = [ψ̄1 | . . . |ψ̄m ] ∈ Rm×m , Φ = [φ̄1 | . . . |φ̄n ] ∈ Rn×n orthogonal, Σd = diag (σ̄1 , . . . , σ̄d )
Relation between POD and SVD: for 1 ≤ i ≤ ` we have
Y φ̄i = σ̄i ψ̄i , Y > ψ̄i = σ̄i φ̄i ,
σ̄i2 = ¯
λi ,
YY > ψ̄i = ¯
λi ψ̄i ,
|
{z
}
|
{z
}
SVD (stability)
Stefan Volkwein
if m < n
POD: Theory and Reduced-Order Modeling
Y > Y φ̄i = ¯
λi φ̄i
|
{z
}
if n < m
12 / 29
The POD Method
Discrete Variant of the POD Method
Example 2: POD in the Euclidean Space X = Rm with Weighted Inner Product
Setting: X = Rm , {yj }nj=1 ⊂ Rm (℘ = 1), Y := [y1 | . . . |yn ] ∈ Rm×n
Inner product: hψ, ψ̃iX = hψ, ψ̃iW = ψ > W ψ̃ for ψ, ψ̃ ∈ Rm and W = W > 0
POD: for any ` ∈ {1, . . . , d} solve
2
n
`
min ∑ αj yj − ∑ hyj , ψi iW ψi j=1
W
i=1
s.t. {ψi }`i=1 ⊂ Rm and hψi , ψj iW = δij , 1 ≤ i, j ≤ `
Summation operator: R = YDY > W and D = diag (α1 , . . . , αn ) ∈ Rn×n
Symmetric eigenvalue problem: Ŷ = W 1/2 YD1/2 and Ŷ Ŷ > = W 1/2 YDY > W 1/2
Ŷ Ŷ > ψi = ¯
λi ψi for 1 ≤ i ≤ `,
and set ψ̄i
= W −1/2 ψ
i
¯
λ1 ≥ ¯
λ2 ≥ . . . ≥ ¯
λ` > 0
for 1 ≤ i ≤ `
Singular value decomposition: Ŷ > Ŷ = D1/2 Y > WYD1/2 and σ̄i2 = ¯
λi
Ŷ > Ŷ φi = ¯
λi φi for 1 ≤ i ≤ `,
¯
λ1 ≥ ¯
λ2 ≥ . . . ≥ ¯
λ` > 0
and set ψ̄i = YD1/2 φi /σ̄i for 1 ≤ i ≤ ` ⇒ no computation of W 1/2
Multiple snapshots: set Yk = [y1k | . . . |ynk ] ∈ Rm×n and
>
R = Y1 DY1> + . . . + Y℘DY℘
W ∈ Rm×m
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
13 / 29
The POD Method
Continuous Variant of the POD Method
Application to Nonlinear Dynamical Systems
Dynamical system in Hilbert space X :
ẏ(t) = f (t, y(t); µ) for t ∈ (t◦ , tf ],
y(t◦ ) = y◦ ∈ X
with given parameter µ ∈ Dad , initial value y◦ and (smooth) nonlinearity f
State trajectory: there is a unique solution y(t; µ) ∈ X for fixed parameter µ ∈ Dad
Multiple snapshots: for grids t◦ = t1 < . . . < tn ≤ tf and {µ k }k=1 ⊂ D let yjk ≈ y(tj ; µ k )
℘
Discrete variant of POD: for any ` ∈ {1, . . . , d} solve
℘
min
n
`
2
∑ ∑ αj yjk − ∑ hyjk , ψi iX ψi X
k=1 j=1
i=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P` )
with positive weights αj (compare Greedy-POD strategy)
Questions: a) How to choose “good” time instances tj for the snapshots?
b) What are appropriate positive weights {αj }nj=1 ?
Continuous variant of POD: for y k (t) = y(t; µ k ), 1 ≤ k ≤ ℘, and any ` ∈ {1, . . . , d} solve
min
℘ Z t
f
∑
k=1 t◦
Stefan Volkwein
2
`
k
y (t) − ∑ hy k (t), ψi iX ψi dt s.t. {ψi }`i=1 ⊂ X , hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P`∞ )
i=1
X
POD: Theory and Reduced-Order Modeling
14 / 29
The POD Method
Continuous Variant of the POD Method
Continuous and Discrete Variant of the POD Method
Dynamical system in Hilbert space X :
ẏ(t) = f (t, y(t); µ) for t ∈ (t◦ , tf ],
y(t◦ ) = y◦ ∈ X
Given multiple snapshots: solutions y k (t) = y(t; µ k ) ∈ X for parameters {µ k }k=1 ⊂ D
℘
Snapshot subspace:
n
o
V = span y k (t) | t ∈ [t0 , tf ] and 1 ≤ k ≤ ℘ ⊂ X
with dimension d ∞ ≤ ∞
Continuous variant of POD: for any ` ∈ {1, . . . , d} solve
2
℘ Z t `
f min ∑
y k (t) − ∑ hy k (t), ψi iX ψi dt s.t. {ψi }`i=1 ⊂ X , hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P`∞ )
k=1 t◦
X
i=1
℘ Rtf
Integral operator: define R ∞ : X → X as R ∞ ψ = ∑
k=1 t◦
hψ, y k (t)iX y k (t) dt for ψ ∈ X
Discrete variant of POD: for yjk ≈ y k (tj ) and any ` ∈ {1, . . . , d} solve
℘
min
n
`
2
∑ ∑ αj yjk − ∑ hyjk , ψi iX ψi X
k=1 j=1
i=1
s.t. {ψi }`i=1 ⊂ X and hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P` )
℘
n
Summation operator: R n : X → X with R n ψ = ∑ ∑ αj hψ, yjk i yjk for ψ ∈ X
X
k=1 j=1
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
15 / 29
The POD Method
Continuous Variant of the POD Method
Asymptotic Analysis [Kunisch/V.’02]
Continuous variant of POD: for any ` ∈ {1, . . . , d} solve
2
℘ Z t `
f min ∑
y k (t) − ∑ hy k (t), ψi iX ψi dt s.t. {ψi }`i=1 ⊂ X , hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P`∞ )
k=1 t◦
X
i=1
℘ Rtf
Operators: R ∞ ψ = ∑
k=1 t◦
℘
n
hψ, y k (t)iX y k (t) dt and R n ψ = ∑ ∑ αj hψ, yjk i yjk
X
k=1 j=1
Theorem [Hilbert-Schmidt, Riesz-Schauder theorems; Perturbation theory [Kato’66]]
X separable, y k ∈ H 1 (t◦ , tf ; X ), choose αj as trapezoidal weights
a) R ∞ is linear, compact, selfadjoint and nonnegative
b) there are eigenfunctions {ψ̄ ∞ } and eigenvalues {¯
λ ∞ } with
i
R
∞
ψ̄i∞
i∈I
i
=¯
λi∞ ψ̄i∞ ,
¯
λ1∞ ≥ ¯
λ2∞ ≥ . . . ≥ 0,
i∈I
lim ¯
λi∞ = 0
i→∞
c) {ψ̄i∞ }`i=1 solves (P`∞ )
d)
℘ Z t
f
∑
`
k=1 t◦ i=1
e) lim
n→∞
`
2
℘ Z t
f
∑ hy k (t), ψ̄i∞ iX dt = ∑ ¯λi∞ , ∑
kR n − R ∞ kL(X )
Stefan Volkwein
i=1
= 0 and
k=1 t◦
λn
lim ¯
n→∞ i
2
`
k
λi∞
y (t) − ∑ hy k (t), ψ̄i∞ iX ψ̄i∞ dt = ∑ ¯
=¯
λi∞ , lim ψ̄in
n→∞
X
i=1
= ψ̄i∞
i>`
for 1 ≤ i ≤ ` (if ¯
λi∞ seperated)
POD: Theory and Reduced-Order Modeling
16 / 29
The POD Method
Numerical Example
Numerical Example: λ -ω PDE System
λ -ω PDE system: s = u 2 + v 2 , λ (s) = 1 − s, ω(s) = −β s
λ (s) −ω(s)
u
σ ∆u
ut
=
+
vt
ω(s)
λ (s)
v
σ ∆v
Homogeneous boundary conditions:
u=v =0
or
∂u
∂v
=
=0
∂n
∂n
Initial conditions: u◦ (x1 , x2 ) = x2 − 0.5, v◦ (x1 , x2 ) = (x1 − 0.5)/2
u for β=1 and t=100
Stefan Volkwein
u for β=2 and t=100
u for β=3 and t=100
POD: Theory and Reduced-Order Modeling
u for β=1 and t=100
17 / 29
The POD Method
Numerical Example
Numerical Example: Decay of the POD Eigenvalues for the λ -ω Systems
λ -ω PDE system: s = u 2 + v 2 , λ (s) = 1 − s, ω(s) = −β s
ut
λ (s) −ω(s)
u
σ ∆u
=
+
vt
ω(s)
λ (s)
v
σ ∆v
Homogeneous boundary conditions:
u=v =0
Decay of the first eigenvalues
0
∂u
∂v
=
=0
∂n
∂n
Decay of the first eigenvalues
0
10
10
−5
−5
10
10
−10
10
β=1
β=1.5
β=2
β=3
1
β=1
β=1.5
β=2
β=3
−10
10
−15
10
or
−15
10
20
30
40
50
Dirichlet boundary conditions
Stefan Volkwein
10
1
10
20
30
40
50
Neumann boundary conditions
POD: Theory and Reduced-Order Modeling
18 / 29
The POD Method
Literature on POD
Related Literature
Principal Component Analysis, Karhunen-Loéve Decomposition
Balanced Truncation, Proper Generalized Decomposition [A. Nouy]
T. Antoulas: Approximation of Large-Scale Dynamical Systems, 2005
P. Holmes, J.L. Lumley, G. Berkooz, C.W. Rowley: Turbulence, Coherent Structures,
Dynamical Systems and Symmetry, 2012
K. Karhunen: Zur Spektraltheorie stochastischer Prozesse, 1945
S. Lall, J.E. Marsden, S. Glavaski: Empirical model reduction of controlled nonlinear
systems, 1999
M. Loève: Functions aléatoire de second ordre, 1945
L. Sirovich: Turbulence and the dynamics of coherent structures, 1987
C.W. Rowley: Model reduction for fluids, using balanced proper orthogonal
decomposition, 2005
...
M. Gubisch, S. V.: POD for linear-quadratic optimal control, 2013
K. Kunisch, S. V.: Control of Burgers’ equation by a reduced order approach using
POD, 1999
K. Kunisch, S. V.: Galerkin POD methods for a general equation in fluid dynamics, 2002
S. V.: Optimal control of a phase-field model using the POD, 2001
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
19 / 29
POD-ROM
Reduced-Order Modeling (ROM) Utilizing the POD Method
Topics:
POD reduced-order modeling
A-priori error analysis for POD
Convergence and rate of convergence results
Extensions
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
20 / 29
POD-ROM
Abstract Linear Evolution Problem
Abstract Linear Evolution Problem
Function spaces: H, V separable Hilbert spaces, V ,→ H dense and compact
Gelfand triple: V ,→ H ≡ H 0 ,→ V 0
Time-dependent bilinear form: a(t; · , ·) : V × V → R satisfying
a(t; ϕ, ϕ̃)≤ γ kϕk kϕ̃k
∀ϕ, ϕ̃ ∈ V a.e. in [t◦ , tf ]
V
V
a(t; ϕ, ϕ)≥ γ1 kϕk2V − γ2 kϕk2H
∀ϕ ∈ V a.e. in [t◦ , tf ]
with time-independent constants γ, γ1 > 0 and γ2 ≥ 0
Solution Hilbert space: W (t◦ , tf ) = {ϕ ∈ L2 (t◦ , tf ; V ) | ϕt ∈ L2 (t◦ , tf ; V 0 )}
⇒ W (t◦ , tf ) ,→ C([t◦ , tf ]; H), i.e., y(t) ∈ H is meaningful for all t ∈ [t◦ , tf ]
Input/control space: U = L2 (t◦ , tf ; U) ' U0 with U = RNu , U = L2 (Ω) or U = L2 (Γ)
Linear evolution problem: find y ∈ W (t◦ , tf ) satisfying y(t◦ ) = y◦ in H and
d
hy(t), ϕiH + a(t; y(t), ϕ) = h(f + Bu)(t), ϕiV 0 ,V
dt
∀ϕ ∈ V a.e. in (t◦ , tf ]
for given y◦ ∈ H, f ∈ L2 (t◦ , tf ; V 0 ) and bounded, linear B : U → L2 (t◦ , tf ; V 0 )
Solvability: there is a unique solution y ∈ W (t◦ , tf ) with
kykW (t◦ ,tf ) ≤ C ky◦ kH + kf kL2 (t◦ ,t
f ;V
0)
+ kukU
with a constant C > 0 independent of y◦ , f , and u
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
21 / 29
POD-ROM
Abstract Linear Evolution Problem
Affine Linear Representation of the Solution
Linear evolution problem: find y ∈ W (t◦ , tf ) satisfying y(t◦ ) = y◦ in H and
d
hy(t), ϕiH + a(t; y(t), ϕ) = h(f + Bu)(t), ϕiV 0 ,V
dt
∀ϕ ∈ V a.e. in (t◦ , tf ]
(EVP)
for given y◦ ∈ H, f ∈ L2 (t◦ , tf ; V 0 ) and bounded, linear B : U → L2 (t◦ , tf ; V 0 )
Particular solution: ŷ ∈ W (t◦ , tf ) solves ŷ(t◦ ) = y◦ in H and
d
hŷ(t), ϕiH + a(t; ŷ(t), ϕ) = hf (t), ϕiV 0 ,V
dt
∀ϕ ∈ V a.e. in (t◦ , tf ]
Control-to-state mapping: S : U → W (t◦ , tf ), w = S u solves w(t◦ ) = 0 in H and
d
hw(t), ϕiH + a(t; w(t), ϕ) = h(Bu)(t), ϕiV 0 ,V
dt
⇒ S linear and bounded
∀ϕ ∈ V a.e. in (t◦ , tf ]
Affine linear representation of the solution to (EVP): y = ŷ + S u
Regularity: y ∈ C([t◦ , tf ]; V ) if a(t; · , ·) = a(· , ·), y◦ ∈ V and f , Bu ∈ L2 (t◦ , tf ; H)
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
22 / 29
POD-ROM
POD Galerkin for Abstract Linear Problems
Continuous Variant of POD for the Evolution Problem
POD setting: X = H and X = V , y 1 = S u (℘ = 1), V = span {y 1 (t) | t ∈ [t◦ , tf ]}, d = dim V
Continuous variant of POD: for any ` ∈ {1, . . . , d} solve
min
Z t 2
`
f y 1 (t) − ∑ hy 1 (t), ψi iX ψi dt
t◦
X
i=1
Integral operator: R : X → X with Rψ =
s.t. {ψi }`i=1 ⊂ X , hψi , ψj iX = δij , 1 ≤ i, j ≤ ` (P`∞ )
Rtf
t◦
hψ, y 1 (t)iX y 1 (t) dt
POD basis of rank `: {ψi }`i=1 ⊂ X , V ` = span {ψ1 , . . . , ψ` }
1
y − P ` y 1 22
L (t◦ ,t
f
=
;X )
Z t 2
`
f y 1 (t) − ∑ hy 1 (t), ψi iX ψi dt =
t◦
i=1
X
d
∑
λi
i=`+1
`
with P ` ψ = ∑ hψ, ψi iX ψi for ψ ∈ X
i=1
Reduced-order model: use V ` as the solution and test space instead of V
⇒ low-dimensional model since ` dim V = ∞ (in practice: ` dim V N = N )
Regularity: if (S u)(t) ∈ V a.e. in [t◦ , tf ], then {ψi }`i=1 ⊂ V holds even for X = H
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
23 / 29
POD-ROM
POD Galerkin for Abstract Linear Problems
POD Galerkin Scheme [Gubisch/V.’13]
Linear evolution problem: find y ∈ W (t◦ , tf ) satisfying y(t◦ ) = y◦ in H and
d
hy(t), ϕiH + a(t; y(t), ϕ) = h(f + Bu)(t), ϕiV 0 ,V
dt
∀ϕ ∈ V a.e. in (t◦ , tf ]
Particular solution: ŷ ∈ W (t◦ , tf ) solves ŷ(t◦ ) = y◦ in H and
d
hŷ(t), ϕiH + a(t; ŷ(t), ϕ) = hf (t), ϕiV 0 ,V
dt
∀ϕ ∈ V a.e. in (t◦ , tf ]
POD control-to-state mapping: S ` : U → W (t◦ , tf ), w ` = S ` u solves w ` (t◦ ) = 0 in H and
d
hw ` (t), ψiH + a(t; w ` (t), ψ) = h(Bu)(t), ψiV 0 ,V
dt
∀ψ ∈ V ` a.e. in (t◦ , tf ]
⇒ S ` linear and bounded
POD solution form: y ` = ŷ + S ` u
⇒ y ` (0) = y◦ in H, i.e., no POD error in the initial condition
POD a-priori error: convergence result for ky − y ` k and kS − S ` kL(U ,W (t◦ ,tf )) ?
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
24 / 29
POD-ROM
POD A-Priori Error Analysis
POD A-Priori Estimation
`
POD setting: X = V , y 1 = S u, V ` = span {ψ1 , . . . , ψ` }, P ` ψ = ∑ hψ, ψi iV ψi
i=1
S u − P ` (S u)22
L (t◦ ,t
Z t 2
`
f =
y 1 (t) − ∑ hy 1 (t), ψi iV ψi dt = ∑ λi
;V
)
f
V
t
◦
i=1
i>`
Decomposition:
y ` (t) − y(t) = ŷ(t) + (S ` u)(t) − ŷ(t) − (S u)(t)
= (S ` u)(t) − P ` ((S u)(t)) + P ` ((S u)(t)) − (S u)(t) = ϑ ` (t) + ρ ` (t)
|
{z
} |
{z
}
=:ρ ` (t)∈(V ` )⊥
=:ϑ ` (t)∈V `
Estimate for ρ ` :
Z t
f
t◦
2
kρ ` (t)kV dt =
Z t
f
t◦
2
kP ` ((S u)(t)) − (S u)(t)kV dt = ∑ λi
i>`
Estimate for ϑ ` : use the evolution equation
d `
hϑ (t), ψiH + a(t; ϑ ` (t)(t), ψ) = h(S u)t (t) − P ` ((S u)t (t)), ψiV 0 ,V ∀ψ ∈ V ` a.e. in (t◦ , tf ]
dt
and choose ψ = ϑ ` (t) ∈ V `
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
25 / 29
POD-ROM
POD A-Priori Error Analysis
POD A-Priori Error for Abstract Linear Evolution Problems
Theorem [Kunisch/V.’01, Hinze/V.’08, Tröltzsch/V.’09, Gubisch/V.’13]
X = V , V = span {y k (t) | t ∈ [t◦ , tf ], 1 ≤ k ≤ ℘}, P ` ψ = ∑`i=1 hψ, ψi iV ψi
a) Snapshot y 1 = S u, y = ŷ + S u, y ` = ŷ + S ` u:
2
2
ky − y ` kW (t◦ ,tf ) ≤ ∑ λi + C1 k(S u)t − P ` (S u)t kL2 (t◦ ,tf ;V 0 )
i>`
b) Snapshots
y1
= S u and
y2
= (S u)t ∈ L2 (t◦ , tf ; V ):
2
ky − y ` kW (t◦ ,tf ) ≤ C2 ∑ λi
i>`
c) If S u
∈ H 1 (t
◦ , tf ; V )
for all ũ ∈ U, then lim kS
`→∞
− S ` kL(U,W (t◦ ,tf ))
=0
In particular, lim ky(ũ) − y ` (ũ)kW (t◦ ,tf ) = 0 for any ũ ∈ U
`→∞
FE approximation quality: kϕ − P h ϕkH + h kϕ − P h ϕkV = O(h2 ) for all ϕ ∈ Z ⊂ V
2
POD approximation quality: kϕ − P ` ϕkL2 (t◦ ,tf ;V ) = O ∑ λi for all ϕ ∈ V ⊂ V
i>`
Extension for the case X = H
Stefan Volkwein
: ky
[Singler’13]
2
− y ` kW (t◦ ,tf )
2
= O ∑ λi kψi − P ` ψi kV
i>`
POD: Theory and Reduced-Order Modeling
26 / 29
POD-ROM
Numerical Example
Numerical Example for the Modified POD Galerkin Scheme [Gubisch]
Problem: linear heat equation on (t◦ , tf ) = (0, 3) and Ω = (0, 2)
Discretization: piecewise linear FE and Crank-Nicolson with a total error of 10−5
Continuous and discontinuous initial condition: y◦ (x) = sin(πx/2) without/with noise
inhomogeneous vs. homogeneous pod
1
10
ky–yℓ kU
k(S–Sℓ )ukU
0
10
−1
10
−2
10
−3
rom errors
10
−4
10
−5
10
−6
10
−7
10
−8
10
−9
10
5
10
15
20
25
30
pod basis rank ℓ
35
40
45
50
inhomogeneous vs. homogeneous pod
2
10
ky–yℓ kU
k(S–Sℓ )ukU
0
10
−2
rom errors
10
−4
10
−6
10
−8
10
−10
10
5
10
15
Stefan Volkwein
20
25
30
pod basis rank ℓ
35
40
45
50
POD: Theory and Reduced-Order Modeling
27 / 29
POD-ROM
Extensions
Further Topics
Fully discretized problems: temporal error, asymptotic analysis, case X = H
A-priori error analysis for nonlinear systems: e.g., Navier-Stokes and battery models
A-priori error analysis with respect to the “truth” approximation
Optimal snapshot locations: goal-oriented choice of snapshots
Efficient POD-Galerkin for nonlinear problems: POD-(D)EIM
Parameterized PDEs: POD-Greedy algorithm
POD and Balancing: utilize observability (i.e., dual) information
...
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
28 / 29
POD-ROM
Literature on POD-ROM
Literature on POD-ROM
Bui-Thanh, Chapelle, Chaturantabut, Hinze, Iliescu, Kemper, Navon, Petzold, Pinnau,
Sachs, Rowley, Schneider, Schu, Singler, Sorensen, Willcox, Yvon, ...
M. Gubisch, S. V.: POD for linear-quadratic optimal control, 2013
M. Hinze, S. V.: POD surrogate models for nonlinear dynamical systems: error
estimates and suboptimal control, 2006
M. Hinze, S. V.: Error estimates for abstract linear-quadratic optimal control problems
using POD, 2008
K. Kunisch, S. V.: Galerkin POD methods for parabolic problems, 2001
K. Kunisch, S. V.: Optimal snapshot location for computing POD basis functions, 2010
O. Lass, S. V.: Adaptive POD basis computation for parametrized nonlinear systems
using optimal snapshot location, 2014
E.W. Sachs, S. V.: POD-Galerkin Approximations in PDE-Constrained Optimization,
2010
Stefan Volkwein
POD: Theory and Reduced-Order Modeling
29 / 29
© Copyright 2026 Paperzz