S1 Supporting information Calculation of Converged Rovibrational Energies and Partition Function for Methane using VibrationalRotational Configuration Interaction Arindam Chakraborty, Donald G. Truhlar Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431 Joel M. Bowman, and Stuart Carter Cherry L. Emerson Center of Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 Date of preparation of this supplementary information: April 18, 2004 Contents of the supporting information: page 1. Comparison of the rovibrational energies of selected vibrational states S2 2. Density of states at selective energies for J = 0 vibrational calculation ~ 3. Convergence of Q with respect to J S5 S7 ~ 4. Convergence of Q with respect to the change in rovibrational basis S8 5. Symmetry labels for vibrational and rotational states of methane S10 S2 1. Comparison of the rovibrational energies of selected vibrational states Table S-1. Comparison of the minimum and the maximum rovibrational energy (in cm1) of selected vibrational states, computed using various VCI bases at J = 15.a,b 715 a 4165 4390 5650 1 2 3 4 d0 c min 0000 1 1248(2) 1248(9) 1248(2) 1248(8) 1248(3) 1248(8) 1248(3) 1248(8) 0100 2 2696(4) 2732(5) 2693(3) 2729(3) 2693(2) 2729(3) 2693(2) 2729(3) 0001 3 2437(6) 2588(1) 2433(6) 2585(3) 2433(7) 2585(5) 2433(7) 2585(5) 0002 6 3667(9) 4007(11) 3621(9) 3991(11) 3621(9) 3980(12) 3621(9) 3976(12) 0101 6 3905(5) 4243(13) 3867(5) 4200(12) 3867(8) 4200(12) 3866(8) 4200(12) 0003 10 4875(11) 5395(7) 4819(11) 5352(7) 4818(10) 5352(9) 4813(10) 5302(9) 0102 12 5087(9) 5512(9) 5062(10) 5465(9) 5050(10) 5465(9) 5048(10) 5464(9) max min max min max min max Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. b c The values of K are provided in the parentheses. They were obtained from the state with the largest CI coefficient. The minimum and maximum energy levels were selected from 31 d 0 states (with M = 0) that have the indicated values of the four vibrational quantum numbers. S3 Table S-2. Comparison of the minimum and the maximum rovibrational energy (in cm1) of selected vibrational states, computed using various VCI bases at J = 20.a,b 1 2 3 4 a 715 4165 4390 5650 d0 c min max 0000 1 2183(–5) 2183(7) 2182(–1) 2183(8) 2182(–2) 2183(9) 2182(–2) 2183(9) 0100 2 3633(1) 3695(–4) 3628(4) 3690(–7) 3628(2) 3690(–10) 3628(2) 3689(–10) 0001 3 3342(7) 3546(12) 3335(9) 3537(8) 3335(8) 3537(11) 3335(8) 3537(11) 0002 6 4534(–5) 4987(11) 4488(1) 4948(12) 4488(–8) 4948(12) 4488(–8) 4948(12) 0101 6 4640(8) 5222(12) 4737(7) 5186(7) 4737(9) 5186(15) 4728(9) 5181(15) 0003 10 5735(8) 6389(11) 5654(8) 6317(18) 5652(9) 6316(17) 5648(9) 6314(17) 0102 12 5952(10) 6513(12) 5885(10) 6530(15) 5884(10) 6462(17) 5791(10) 6459(17) min max min max min max Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. b c The values of K are provided in the parentheses. They were obtained from the state with the largest CI coefficient. The minimum and maximum energy levels were selected from 41 d 0 states (with M = 0) that have the indicated values of the four vibrational quantum numbers. S4 Table S-3. Comparison of the minimum and the maximum rovibrational energy (in cm1) of selected vibrational states, computed using various VCI bases at J = 25.a,b 1 2 3 4 a 715 4165 4390 5650 d0 c min max 0000 1 3375(1) 3377(–6) 3375(2) 3376(–6) 3375(2) 3376(–7) 3375(2) 3376(–7) 0100 2 4827(6) 4917(19) 4651(6) 4911(17) 4651(7) 4911(19) 4651(7) 4911(19) 0001 3 4497(–4) 4741(14) 4489(–5) 4733(15) 4489(–6) 4733(15) 4489(–6) 4732(15) 0002 6 5656(4) 6248(16) 5611(7) 6175(17) 5611(6) 6175(19) 5610(6) 6175(19) 0101 6 5780(11) 6465(17) 5740(9) 6426(18) 5740(10) 6426(19) 5739(10) 6425(19) 0003 10 6833(12) 7498(19) 6742(10) 7542(22) 6741(11) 7537(22) 6737(11) 7518(22) 0102 12 6943(17) 7498(21) 6817(18) 7545(21) 6918(17) 7545(22) 6917(17) 7544(22) min max min max min max Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. b c The values of K are provided in the parentheses. They were obtained from the state with the largest CI coefficient. The minimum and maximum energy levels were selected from 51 d 0 states (with M = 0) that have the indicated values of the four vibrational quantum numbers. S5 2. Density of states at selective energies for J = 0 vibrational calculation The density of state at energy E was calculated by dividing the total number of states in the range ( E , E ) by 2 . The results shown below were calculated using two different values of for J = 0 vibrational calculation with a VCI basis of 5650. Table S-4. Density of states at specific energies for J = 0 vibrational calculations Density of states ((cm1) 1) E (cm1) = 30 cm1 = 60 cm1 2552 0.05 0.05 2713 0.10 0.06 3816 0.03 0.03 3982 0.13 0.09 5430 0.35 0.26 5642 0.32 0.26 8423 0.75 0.77 S6 Figure caption Fig. S-1. Number of states that are below a cutoff energy E cut for the J = 0 vibrational calculation with a VCI basis of 5650. Number of energy levels 1200 1000 800 600 400 200 0 0 2000 4000 6000 Ecut(cm-1) 8000 10000 S7 ~ 3. Convergence of Q with respect to J ~ Table S-5. Convergence of Q with respect to J max .a a T (K) J max 20 J max 30 J max 40 J max 50 100 117.4 117.4 117.4 117.4 200 329.3 329.3 329.3 329.3 300 608.9 609.0 609.2 609.0 400 967.4 968.2 968.2 968.2 500 1442 1448 1448 1448 600 2084 2109 2109 2109 700 2958 3032 3032 3032 800 4142 4319 4321 4321 900 5727 6097 6103 6103 1000 7895 8598 8616 8616 Calculations were performed with a VCI basis of 5650, and using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. S8 ~ 4. Convergence of Q with respect to the change in rovibrational basis ~ Table S-6. Convergence of QJ with respect to the change in rovibrational basis for J = 5.a a N Vib 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K 900K 1000 K 250 17.09 52.53 76.99 95.95 114.87 137.07 164.78 199.95 244.45 300.09 500 17.09 52.53 76.99 95.95 114.88 137.08 164.81 200.09 244.98 301.64 Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. ~ Table S-7. Convergence of QJ with respect to the change in rovibrational basis for J = 11.a a N Vib 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K 900K 1000 K 200 3.63 102 5.06 26.46 62.33 109.39 168.49 243.10 338.27 460.01 615.00 300 3.63 102 5.06 26.46 62.33 109.40 168.50 243.12 338.33 460.22 615.51 Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. S9 ~ Table S-8. Convergence of QJ with respect to the change in rovibrational basis for J = 16.a a N Vib 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K 900K 1000 K 100 2.13 106 0.06 1.66 9.38 27.82 60.78 112.48 188.20 294.19 437.11 200 2.13 106 0.06 1.66 9.39 27.84 60.84 112.71 189.02 296.73 443.88 Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. ~ Table S-9. Convergence of QJ with respect to the change in rovibrational basis for J = 21.a a N Vib 100 K 200 K 300 K 400 K 500 K 600 K 700 K 800 K 900K 1000 K 100 2.47 1012 0.000 0.02 0.44 2.77 9.69 25.15 54.30 103.08 178.72 200 2.47 1012 7.81 105 0.02 0.46 2.78 9.75 25.31 54.53 103.50 179.13 Calculations were performed using 3-mode representation with 15 Gauss-Hermite integration points and 12 harmonic oscillator functions per mode. S10 5. Symmetry labels for vibrational and rotational states of methane Table S-10 gives the symmetries of the overtone levels of the degenerate modes for methane. Table S-11 gives the transformations from irreducible representations of the group of all rotations and reflections to irreducible representations of the point group of methane, and Table S-12 gives the symmetries of the rotational states that result from this transformation. The final symmetries of the states are obtained by taking direct products of the vibrational symmetries, such as those in Table S-10, with the rotational symmetries, such as those in Table S-12. S11 Table S-10. Symmetry types of overtone levels of degenerate vibrations for Td point group.a a Vibrational level Resulting statesb (e)2 A1 + E (e)3 A1 + A2 + E (e)4 A1 + 2E (e)5 A1 + A2 + 2E (e)6 2A1 + A2 + 2E (e)7 A1 + A2 + 3E (f2)2 A1 + E + F2 (f2)3 A1 + F1 + 2F2 (f2)4 2A1 + 2E + F1 + 2F2 (f2)5 A1 + E + 2F1 + 4F2 (f2)6 3A1 + A2 + 3E + 2F1 + 4F2 (f2)7 2A1 + 2E + 4F1 + 6F2 G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Lancaster Press, Inc., New York, 1945), pp. 125127. b These states are degenerate for a harmonic oscillator but are split by the anharmonicity. S12 Table S-11. Transformation of DJg and D Ju to Td point group.a Class E 0 DJg D Ju 2J+1 8C2 2 3 1 2 sin( J ) 2 3 sin 2J+1 H. A. Jahn, Proc. Roy. Soc. A 171, 450 (1939). 3 1 2 sin( J ) 2 3 sin a 3 3C2 6σd 1 sin( J ) 2 1 sin( J ) 2 sin 2 1 sin( J ) 2 sin 2 sin 2 1 sin( J ) 2 sin 6S4 2 2 1 sin( J ) 2 2 sin 4 1 sin( J ) 2 2 sin 4 S13 Table S-12. Representation of DJg and D Ju in irreducible representations of the Td point group.a a J Reduction of DJg Reduction of D Ju 0 A1 A2 1 F1 F2 2 E + F2 E + F1 3 A2 + F1+ F2 A1 + F1 + F2 4 A1 + E + F1+ F2 A2 + E + F1 + F2 5 E + 2F1 + F2 E + F1 + 2F2 6 A1 + A2 + E + F1 + 2F2 A1 + A2 + E + 2F1 + F2 7 A2 + E + 2F1 + 2F2 A1 + E + 2F1 + 2F2 8 A1 + 2E + 2F1 + 2F2 A2 + 2E + 2F1 + 2F2 9 A1 + A2 + E + 3F1 + 2F2 A1 + A2 + E + 2F1 + 3F2 10 A1 + A2 + 2E + 2F1 + 3F2 A1 + A2 + 2E + 3F1 + 2F2 11 A2 + 2E + 3F1 + 3F2 A1 + 2E + 3F1 + 3F2 12 2A1 + A2 + 2E + 3F1 + 3F2 A1 + 2A2 + 2E + 3F1 + 3F2 13 A1 + A2 + 2E + 4F1 + 3F2 A1 + A2 + 2E + 3F1 + 4F2 14 A1 + A2 + 3E + 3F1 + 4F2 A1 + A2 + 3E + 4F1 + 3F2 15 A1 + 2A2 + 2E + 4F1 + 4F2 2A1 + A2 + 2E + 4F1 + 4F2 H. A. Jahn, Proc. Roy. Soc. A 171, 450 (1939).
© Copyright 2025 Paperzz