Chapter 2 The z Transform Introduction • A mathematical tool used to the analysis and synthesis of discrete-time control systems: the z transform. – The Laplace transform in continuous-time systems. – With the z transform method, the solutions to linear difference equations become algebraic in nature. • Discrete-Time Signals – The sampled signal: x(0), x(T), x(2T),…, where T is the sampling period. – If the system involves an iterative process carried out by a digital computer, the signal involved is a number sequence: x(0), x(1), x(2),…. – it can be considered as a sampled signal of x(t) when the sampling period T is 1 sec. 41-142 Chap. 2 The z Transform 2 The z Transform • One-sided z Transform X ( z ) Z x(t ) Z x(kT ) x(kT ) z k k 0 X ( z ) Z x(k ) x(k ) z k k 0 – For most engineering applications the one-sided z transform will have a convenient close-form solution in its region of convergence. X ( z ) x(0) x(T ) z 1 x(2T ) z 2 x(kT ) z k – The z transform of any continuous-time function may be written in the series form by inspection. – The inverse transform can be obtained by inspection if X(z) is given in the series form. 41-142 Chap. 2 The z Transform 3 z Transforms of Elementary Functions • Unit-Step Function 1(t ) 0 t x(t ) 0 t0 X ( z ) Z 1(t ) 1z k 0 k z k k 0 1 z 1 z 2 z 3 1 1 z 1 z z 1 – The series converges if z 1 – Unit step sequence 1 0 t 1(k ) 0 t 0 41-142 Chap. 2 The z Transform 4 z Transforms of Elementary Functions • Unit-Ramp Function t 0 t x(t ) 0 t 0 x(kT ) kT , k 0,1,2, X ( z ) Z t x(kT ) z k 0 kTz k 0 k T kz k k 0 T ( z 1 2 z 2 3 z 3 ) T 41-142 k z 1 1 z 1 2 Tz z 12 Chap. 2 The z Transform 5 z Transforms of Elementary Functions • Polynomial Function ak a k x(t ) 0 k 0,1,2, k 0 X ( z ) Z a x(k ) z k k k 0 a k z k k 0 1 az 1 a 2 z 2 a 3 z 3 1 1 az 1 z za • Exponential Function e at x(t ) 0 0t t0 x(kT ) e akT , 41-142 k 0,1,2, x(kT ) z X ( z) Z e at k 0 k e akT z k k 0 1 e aT z 1 e 2 aT z 2 e 3aT z 3 1 1 e aT z 1 z z e aT Chap. 2 The z Transform 6 z Transforms of Elementary Functions • Sinusoidal Function sin t 0 t x(t ) t0 0 1 j t X ( z ) Z sin t Z e e jt 2 j 1 1 1 2 j 1 e jT z 1 1 e jT z 1 e jt cos t j sin t e jt cos t j sin t sin t 1 jt jt e e 2j Z e at 1 1 e aT z 1 1 (e jT e jT ) z 1 2 j 1 (e jT e jT ) z 1 z 2 z 1 sin T 1 2 z 1 cos T z 2 z sin T 2 z 2 z cos T 1 See Table 2-1 on pages 29-30 41-142 Chap. 2 The z Transform 7 Important Properties and Theorems of the z Transform • Multiplication by a Constant Z ax(t ) ax(kT ) z k k 0 a x(kT ) z k aX ( z ) k 0 • Linearity of the z Transform x(k ) f (k ) g (k ) X ( z ) F ( z ) G ( z ) X ( z ) Z x(k ) Z f (k ) g (k ) f (k ) g (k )z k k 0 f (k ) z k 0 k g (k )z k k 0 Z f (k ) Z g (k ) F ( z ) G ( z ) 41-142 Chap. 2 The z Transform 8 Important Properties and Theorems of the z Transform • Multiplication by ak Z a x(k ) a x(k ) z k k k 0 k x(k )( a 1 z ) k k 0 X (a 1 z ) • Shifting Theorem Z x(t nT ) z X ( z ) n Z x(t nT ) x(kT nT ) z k k 0 z n x(kT nT ) z ( k n ) k 0 z n x(mT ) z m m n z n x(mT ) z m m 0 z n X ( z ) 41-142 Chap. 2 The z Transform 9 Important Properties and Theorems of the z Transform • Shifting Theorem (cont.) n 1 Z x(t nT ) z X ( z ) x(kT ) z k k 0 n Z x(t nT ) x(kT nT ) z k k 0 z n x(kT nT ) z ( k n ) k 0 n 1 n 1 k k ( k n ) n x(kT ) z x(kT ) z z x(kT nT ) z 0 k 0 k 0 k n1 x ( mT ) z m x ( kT ) z k k 0 mn n 1 k z x(kT ) z x(kT ) z k k 0 k 0 n n 1 z X ( z ) x(kT ) z k k 0 n 41-142 Chap. 2 The z Transform 10 Important Properties and Theorems of the z Transform • Example 2-3 1 z 1 Z 1(t T ) z Z 1(t ) z 1 1 z 1 z 1 1 1 1 z 4 Z 1(t 4T ) z Z 1(t ) z 1 1 z 1 z 1 4 4 – Note that z- 1 represents a delay of 1 sampling period T, regardless of the value of T. 41-142 Chap. 2 The z Transform 11 Important Properties and Theorems of the z Transform • Complex Translation Theorem Z e x(t ) x(kT )e at k 0 akT z k x(kT )( ze aT ) k X ( ze aT ) k 0 • Initial Value Theorem x(0) lim X ( z ) z X ( z ) x(k ) z k x(0) x(1) z 1 x(2) z 2 k 0 41-142 Chap. 2 The z Transform 12 Important Properties and Theorems of the z Transform • Final Value Theorem lim x(k ) lim (1 z 1 ) X ( z ) k z 1 Z x(k ) X ( z ) x(k ) z k k 0 Z x(k 1) z X ( z ) x(k 1) z k 1 k 0 Hence x(k ) z k 0 k x(k 1) z k X ( z ) z 1 X ( z ) k 0 k lim x(k ) z x(k 1) z k lim X ( z ) z 1 X ( z ) z 1 k 0 k 0 z 1 x(k ) x(k 1) x(0) x(1) x(1) x(0) x(2) x(1) x() lim x(k ) k k 0 41-142 Chap. 2 The z Transform 13 Important Properties and Theorems of the z Transform • Example 2-9 Determine the final value x() of 1 1 X ( z) , 1 aT 1 1 z 1 e z x() lim (1 z 1 ) X ( z ) z 1 a0 1 1 lim (1 z 1 ) 1 aT 1 z 1 1 z 1 e z 1 z 1 lim 1 aT 1 z 1 1 e z 1 x(t ) 1 e at x() lim 1 e at 1 t 41-142 Chap. 2 The z Transform 14 The Inverse z Transform • The notation for the inverse z transform is Z-1. The inverse z transform of X(z) yields the corresponding time sequence x(k). – Only the time sequence at the sampling instants is obtained from the inverse z transform. – The inverse z transform yields a time sequence that specifies the values of x(t) only at discrete instants of time. • Many different time functions x(t) can have the same x(kT). 41-142 Chap. 2 The z Transform 15 The Inverse z Transform • A z transform table: an obvious method for finding the inverse z transform. – Table 2-2 • Four methods for obtaining the inverse z transform: – – – – Direct division method Computational method Partial-fraction-expansion method Inversion integral method 41-142 Chap. 2 The z Transform 16 The Inverse z Transform • Poles and Zeros in the z Plane b0 z m b1 z m 1 am X ( z) n z a1 z n 1 an b0 ( z z1 )( z z 2 ) ( z z m ) ( z p1 )( z p2 ) ( z pn ) – The locations of the poles and zeros of X(z) determine the characteristics of x(k), the sequence of values or numbers. – We often use a graphical display in the z plane of the locations of the poles and zeros of X(z). z 2 0.5z z ( z 0.5) X ( z) 2 z 3z 2 ( z 1)( z 2) poles at z=-1, z=-2 zeros at z=0, z=-0.5 1 0.5 z 1 1 0.5z 1 X ( z) 1 2 1 3z 2 z (1 z 1 )( z 2 z 1 ) 41-142 Chap. 2 The z Transform 17 The Inverse z Transform • Direct Division Method X ( z ) x(k ) z k k 0 x(0) x(1) z 1 x(2) z 2 x(k ) z k – Example 2-10 10 z 5 X ( z) ( z 1)( z 0.2) 10 z 1 5 z 2 X ( z) 1 1.2 z 1 0.2 z 2 X ( z ) 10 z 1 17 z 2 18.4 z 3 18.68z 4 x ( 0) 0 X ( z ) x(k ) z k 0 k x (1) 10 x ( 2) 17 x (3) 18.4 x ( 4) 18.68 41-142 Chap. 2 The z Transform 18 The Inverse z Transform • Computational Method – Consider a system 0.4673z 1 0.3393z 2 G( z ) 1 1.5327 z 1 0.6607 z 2 – For the Kronecker delta input, X(z) =1 Y ( z) 0.4673z 1 0.3393z 2 0.4673z 0.3393 G( z ) X ( z ) 1 1.5327 z 1 0.6607 z 2 z 2 1.5327 z 0.6607 – The inverse z transform of G(z) is given by y(0),y(1),y(2),… – Two approaches to obtain the inverse transform: • MATLAB approach • Difference equation approach 41-142 Chap. 2 The z Transform 19 The Inverse z Transform • Computational Method (cont.) – MATLAB approach 0.4673z 1 0.3393z 2 0.4673z 0.3393 Y ( z ) G( z ) 1 1.5327 z 1 0.6607 z 2 z 2 1.5327 z 0.6607 num=[0 0.4673 -0.3393] den=[1 -1.5327 0.6607] x=[1 zeros(1,40)] y=filter(num,den,x) y = 0 0.4673 0.3769 0.2690 0.1632 0.0725 0.0032 -0.0429 -0.0679 -0.0758 -0.0712 -0.0591 -0.0436 -0.0277 -0.0137 -0.0027 0.0050 0.0094 0.0111 0.0108 0.0092 0.0070 0.0046 0.0025 0.0007 -0.0005 -0.0013 -0.0016 -0.0016 -0.0014 -0.0011 -0.0008 -0.0004 -0.0002 0.0000 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 41-142 Chap. 2 The z Transform 20 The Inverse z Transform • Computational Method (cont.) – MATLAB approach 41-142 Chap. 2 The z Transform 21 The Inverse z Transform • Computational Method (cont.) – Difference Equation Approach ( z 2 1.5327 z 0.6607)Y ( z ) (0.4673z 0.3393) X ( z ) y (k 2) 1.5327 y (k 1) 0.6607 y (k ) 0.4673x(k 1) 0.3393x(k ) where x(0) 1 and x(k ) 0 for k 0, and y (k ) 0 for k 0. • for k = -2 y (0) 1.5327 y (1) 0.6607 y (2) 0.4673x(1) 0.3393x(2) y (0) 0 • for k = -1 y (1) 1.5327 y (0) 0.6607 y (1) 0.4673x(0) 0.3393x(1) y (1) 0.4673 41-142 Chap. 2 The z Transform 22 The Inverse z Transform • Partial-Fraction-Expansion Method – Each expanded term has a form that may easily be found from commonly available z transform tables. b0 z m b1 z m1 bm b0 z m b1 z m1 bm X ( z) X ( z) n , mn n 1 ( z p1 )( z p2 ) ( z pn ) z a1 z an – for simple pole an X ( z) a1 a2 z z p1 z p2 z pn – for multiple pole X ( z) c1 c2 z z p1 2 z p1 41-142 X ( z) ai z pi z z pi 2 X ( z) c1 z p1 z z p1 d 2 X ( z) c2 z p1 dz z z p1 Chap. 2 The z Transform 23 The Inverse z Transform • Partial-Fraction-Expansion Method (cont.) – Example 2-14 1 e z X ( z) z 1z e aT aT X ( z) 1 1 z z 1 z e aT 1 Z 1 1 1 1 z X ( z) 1 1 1 z 1 1 e aT z 1 x(kT ) 1 e akT , k 0,1,2,... 1 Z 1 e akT aT 1 1 e z 41-142 Chap. 2 The z Transform 24 The Inverse z Transform • Inversion Integral Method Z 1 X ( z ) x(kT ) x(k ) 1 k 1 X ( z ) z dz 2j C x(kT ) x(k ) K1 K 2 K m m residue of X ( z ) z k 1 at pole z zi of X ( z ) z k 1 i 1 – for a simple pole K lim z zi X ( z ) z k 1 z zi – for a multiple pole 1 d q 1 q K lim q 1 z z j X ( z ) z k 1 q 1! zz j dz 41-142 Chap. 2 The z Transform 25 The Inverse z Transform • Inversion Integral Method (cont.) – Example 2-16 1 e aT z k z 1 e aT k 1 X ( z) z X ( z) z 1z eaT z 1 z eaT • Two simple poles: z=z1=1 and z=z2=e-aT (1 e aT ) z k x(k ) residue of at pole z z i ( z 1)( z e aT ) i 1 K1 K 2 (1 e aT ) z k K1 lim ( z 1) 1 aT z 1 ( z 1)( z e ) 2 (1 e aT ) z k aT K 2 limaT ( z e ) e akT aT z e ( z 1)( z e ) x(kT ) K1 K 2 1 e akT 41-142 Chap. 2 The z Transform 26 z Transform Method for Solving Difference Equations • The linear time-invariant discrete-time system characterized by the following linear difference equation: x(k ) a1 x(k 1) an x(k n) b0u(k ) b1u(k 1) bnu(k n) Discrete function 41-142 z Transform x ( k 3) z 3 X ( z ) z 3 x(0) z 2 x(1) zx(2) x ( k 2) z 2 X ( z ) z 2 x(0) zx(1) x(k 1) zX ( z ) zx (0) x(k ) X (z ) x(k 1) x ( k 2) z 1 X ( z ) z 2 X ( z ) x(k 3) z 3 X ( z ) Chap. 2 The z Transform 27 z Transform Method for Solving Difference Equations • Example 2-18 x(k 2) 3x(k 1) 2 x(k ) 0, x(0) 0, x(1) 1 Z x(k 2) z 2 X ( z ) z 2 x(0) zx (1) Z x(k 1) zX ( z ) zx (0) Z x(k ) X ( z ) z 2 X ( z ) z 2 x(0) zx(1) 3zX ( z ) 3zx(0) 2 X ( z ) 0 z z z z z 2 3z 2 ( z 1)( z 2) z 1 z 2 1 1 1 z 1 1 2 z 1 X ( z) x(k ) (1) k (2) k , 41-142 k 0,1,2, Chap. 2 The z Transform 28 Concluding Comments • The basic theory of the z transform method has been presented. – z transform : linear time invariant discrete-time systems – Laplace transform: linear time-invariant continuous-time systems • With the z transform method, linear time-invariant difference equations can be transformed into algebraic equations. • The z transform method allows us to use conventional analysis and design techniques available to analog control systems. 41-142 Chap. 2 The z Transform 29
© Copyright 2026 Paperzz