Properties of the MIMO Radar Ambiguity Function Chun-Yang Chen and P. P. Vaidyanathan California Institute of Technology Electrical Engineering/DSP Lab ICASSP 2008 Outline Review of the background – Radar ambiguity function and its properties – MIMO radar – MIMO radar ambiguity function Properties of the MIMO ambiguity function – – – – Signal component Energy Symmetry Linear frequency modulation (LFM) Conclusion Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 2 Review: Ambiguity function and MIMO radar 3 Radar Ambiguity Function u(t) u(t-t)ej2pnt Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 t: delay n: Doppler 4 Radar Ambiguity Function u(t) Matched filter output u(t-t)ej2pnt t: delay n: Doppler (u (t t )e j 2pnt )(u (t t ' )e j 2pn 't )* dt Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 5 Radar Ambiguity Function u(t) Matched filter output u(t-t)ej2pnt t: delay n: Doppler (u (t t )e j 2pnt )(u (t t ' )e j 2pn 't )* dt u (t )u * (t (t t ' ))e j 2p (n n ')t dt Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 6 Radar Ambiguity Function u(t) Matched filter output u(t-t)ej2pnt t: delay n: Doppler (u (t t )e j 2pnt )(u (t t ' )e j 2pn 't )* dt u (t )u * (t (t t ' ))e j 2p (n n ')t dt Radar ambiguity function (t ,n ) u (t )u * (t t )e j 2pnt dt Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 7 Radar Ambiguity Function u(t) Matched filter output u(t-t)ej2pnt t: delay n: Doppler (u (t t )e j 2pnt )(u (t t ' )e j 2pn 't )* dt u (t )u * (t (t t ' ))e j 2p (n n ')t dt Radar ambiguity function (t ,n ) u (t )u * (t t )e j 2pnt dt Ambiguity function characterizes the Doppler and range resolution. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 8 Radar Ambiguity Function u (t ) Multiple targets (tk,nk) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 9 Radar Ambiguity Function u (t ) K j 2pn k t u ( t t ) e k k 1 Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 Multiple targets (tk,nk) 10 Radar Ambiguity Function u (t ) K j 2pn k t u ( t t ) e k k 1 Matched filter output K k 1 k Multiple targets (tk,nk) (t t k ,n n k ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 11 Radar Ambiguity Function u (t ) K j 2pn k t u ( t t ) e k k 1 Matched filter output K k 1 k Multiple targets (tk,nk) (t t k ,n n k ) n target 1 (t1,n1) target 2 (t2,n2) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 t 12 Radar Ambiguity Function u (t ) K j 2pn k t u ( t t ) e k k 1 Matched filter output n K k 1 k Multiple targets (tk,nk) (t t k ,n n k ) (t t1,n n1 ) target 1 (t1,n1) target 2 (t2,n2) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 t 13 Radar Ambiguity Function Ambiguity function characterizes the Doppler and range resolution. n (t t1,n n1 ) target 1 (t1,n1) target 2 (t2,n2) t (t ,n ) u (t )u (t t ) e j 2pnt dt Ambiguity function Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 14 Radar Ambiguity Function Ambiguity function characterizes the Doppler and range resolution. n (t t1,n n1 ) target 1 (t1,n1) target 2 (t2,n2) t (t ,n ) u (t )u (t t ) e j 2pnt dt Ambiguity function Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 15 Properties of Radar Ambiguity Function Signal component (0,0) 1 (t ,n ) n Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 t 16 Properties of Radar Ambiguity Function Signal component (0,0) 1 (t ,n ) Energy 2 (t ,n ) dtdn 1 Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 n t 17 Properties of Radar Ambiguity Function Signal component (0,0) 1 (t ,n ) Energy 2 (t ,n ) dtdn 1 Symmetry n t (t ,n ) (t ,n ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 18 Properties of Radar Ambiguity Function Signal component (0,0) 1 (t ,n ) Energy 2 (t ,n ) dtdn 1 n Symmetry t (t ,n ) (t ,n ) Linear frequency modulation (LFM) u LFM (t ) u(t )e jpkt 2 LFM (t ,n ) (t ,n kt ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 19 MIMO Radar The radar systems which emits orthogonal (or noncoherent) waveforms in each transmitting antennas are called MIMO radar. MIMO radar f2(t) f1(t) f0(t) SIMO radar (Traditional) w2f(t) w1f(t) w0f(t) Advantages – Better spatial resolution [Bliss & Forsythe 03] – Flexible transmit beampattern design [Fuhrmann & San Antonio 04] – Improved parameter identifiability [Li et al. 07] Chun-Yang Chen, Caltech DSP Lab | ICASSP 2007 student paper contest Ambiguity Function in MIMO Radar (t,n,f) t:delay n:Doppler f: Spatial freq. TX dT u0(t) u1(t) … uM-1(t) Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 21 Ambiguity Function in MIMO Radar (t,n,f) TX dT u0(t) u1(t) t:delay n:Doppler f: Spatial freq. RX … uM-1(t) (t,n,f) … dR MF … MF … Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 MF … 22 Ambiguity Function in MIMO Radar (t,n,f) TX dT u0(t) u1(t) t:delay n:Doppler f: Spatial freq. RX … uM-1(t) (t,n,f) … dR MF … MF … y (t ,n , f ) Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 MF … (t ) 23 Ambiguity Function in MIMO Radar (t,n,f) TX RX … dT u0(t) u1(t) uM-1(t) Matched filter output (y (t ',n ', f ') t:delay n:Doppler f: Spatial freq. (t,n,f) … dR MF … MF … y (t ,n , f ) MF … (t ) (t ) ) y (t ,n , f ) (t )dt H Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 24 Ambiguity Function in MIMO Radar Matched filter output (y (t ',n ', f ') (t ) ) y (t ,n , f ) (t )dt H ( u N 1 M 1 M 1 n 0 m 0 m ' 0 j 2p ( f f ') n e t:delay n:Doppler f: Spatial freq. um(t): m-th waveform xm: m-th antenna location n: receiving antenna index ) * j 2p (n v ') t j 2p ( fm f 'm ') ( t t ) u ( t t ' ) e dt e m m Receiver beamforming Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 25 Ambiguity Function in MIMO Radar Matched filter output (y (t ',n ', f ') (t ) ) y (t ,n , f ) (t )dt H ( u N 1 M 1 M 1 n 0 m 0 m ' 0 j 2p ( f f ') n e t:delay n:Doppler f: Spatial freq. um(t): m-th waveform xm: m-th antenna location n: receiving antenna index ) * j 2p (n v ') t j 2p ( fm f 'm ') ( t t ) u ( t t ' ) e dt e m m Receiver beamforming m,m ' (t ,n ) um (t )um* ' (t t )e j 2pn t dt Cross ambiguity function Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 26 Ambiguity Function in MIMO Radar Matched filter output (y (t ',n ', f ') (t ) ) y (t ,n , f ) (t )dt H ( u N 1 M 1 M 1 n 0 m 0 m ' 0 j 2p ( f f ') n e t:delay n:Doppler f: Spatial freq. um(t): m-th waveform xm: m-th antenna location n: receiving antenna index ) * j 2p (n v ') t j 2p ( fm f 'm ') ( t t ) u ( t t ' ) e dt e m m Receiver beamforming m,m ' (t ,n ) um (t )um* ' (t t )e j 2pn t dt [San Antonio et al. 07] M 1 M 1 (t ,n , f , f ' ) m,m ' (t ,n )e j 2p ( fm f 'm ') m 0 m ' 0 MIMO ambiguity function Chun-Yang Chen, Caltech DSP Lab | Asilomar Conference 2007 27 Properties of the MIMO ambiguity function 28 Properties of the signal component Ambiguity function: Signal component: (t ,n , f , f ' ) (0,0, f , f ) (0,0, f , f ' ) f ' f f' (0,0, f , f ) f Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 29 Properties of the signal component Ambiguity function: Signal component: (0,0, f , f ' ) (t ,n , f , f ' ) (0,0, f , f ) For orthogonal waveforms, um (t )um* ' (t )dt mm' f ' f f' (0,0, f , f ) f Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 30 Properties of the signal component Ambiguity function: Signal component: (0,0, f , f ' ) (t ,n , f , f ' ) (0,0, f , f ) For orthogonal waveforms, f ' f f' (0,0, f , f ) um (t )um* ' (t )dt mm' (0,0, f , f ) M , f If the waveforms are orthogonal, the signal component will be a constant for all angle. f Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 31 Properties of the signal component Ambiguity function: Signal component: (t ,n , f , f ' ) (0,0, f , f ) For general waveforms, For orthogonal waveforms, 2 u m (t ) dt 1 um (t )um* ' (t )dt mm' (0,0, f , f ) M , f Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 32 Properties of the signal component Ambiguity function: Signal component: (t ,n , f , f ' ) (0,0, f , f ) For general waveforms, If dT For orthogonal waveforms, 2 u m (t ) dt 1 is integer, um (t )um* ' (t )dt mm' (0,0, f , f ) M , f (0,0, f , f ) df M , f The integration of the signal component is a constant if dT is a multiple of the wavelength. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 dT is the spacing between the transmitting antennas 33 Properties of the signal component Ambiguity function: Signal component: (t ,n , f , f ' ) (0,0, f , f ) For general waveforms, If For orthogonal waveforms, 2 u m (t ) dt 1 dT dT is the spacing between the transmitting antennas is integer, um (t )um* ' (t )dt mm' (0,0, f , f ) M , f (0,0, f , f ) df M , f For the general case, 2dT / M (0,0, f , f ) df 2dT / M 2d T / 2d T / Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 In general, the integration of the signal component is confined. 34 Energy of the cross ambiguity function Cross ambiguity function: mm' (t ,n ) um (t )um* ' (t t )e j 2pnt dt Energy of the cross ambiguity function: mm' (t ,n ) dt dn 2 Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 35 Energy of the cross ambiguity function Cross ambiguity function: mm' (t ,n ) um (t )um* ' (t t )e j 2pnt dt Energy of the cross ambiguity function: mm' (t ,n ) dt dn 2 u m (t )u (t t )e * m' j 2pnt 2 dt dndt Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 36 Energy of the cross ambiguity function Cross ambiguity function: mm' (t ,n ) um (t )um* ' (t t )e j 2pnt dt Energy of the cross ambiguity function: mm' (t ,n ) dt dn 2 u m (t )u (t t )e * m' j 2pnt 2 dt dndt um (t )u (t t ) dtdt * m' 2 Parserval relation ( u (t ) dt ) 1 2 2 m Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 37 Energy of the cross ambiguity function Cross ambiguity function: mm' (t ,n ) um (t )um* ' (t t )e j 2pnt dt Energy of the cross ambiguity function: mm' (t ,n ) dt dn 1 2 The energy of the cross ambiguity function is a constant. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 38 Energy of the MIMO ambiguity function MIMO ambiguity function: M 1 M 1 (t ,n , f , f ' ) mm' (t ,n )e j 4pd T / ( fm f 'm ') m 0 m ' 0 Energy of the ambiguity function (t ,n , f , f ' ) 2 dtdndfdf ' Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 39 Energy of the MIMO ambiguity function MIMO ambiguity function: M 1 M 1 (t ,n , f , f ' ) mm' (t ,n )e j 4pd T / ( fm f 'm ') m 0 m ' 0 Energy of the ambiguity function (t ,n , f , f ' ) M 1 M 1 m 0 m ' 0 2 dtdndfdf ' 2 j 4pdT / ( fm f 'm ') ( t , n ) e dfdf ' dtdn mm' dT is the spacing between the transmitting antennas Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 40 Energy of the MIMO ambiguity function MIMO ambiguity function: M 1 M 1 (t ,n , f , f ' ) mm' (t ,n )e j 4pd T / ( fm f 'm ') m 0 m ' 0 Energy of the ambiguity function (t ,n , f , f ' ) M 1 M 1 m 0 m ' 0 M 1 M 1 2 dT is the spacing between the transmitting antennas dtdndfdf ' 2 j 4pdT / ( fm f 'm ') ( t , n ) e dfdf ' dtdn mm' mm' (t ,n ) dtdn 2 m 0 m ' 0 Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 If dT is a multiple of the wavelength, we can apply Parserval relation for 2D DFT. 41 Energy of the MIMO ambiguity function MIMO ambiguity function: M 1 M 1 (t ,n , f , f ' ) mm' (t ,n )e j 4pd T / ( fm f 'm ') m 0 m ' 0 Energy of the ambiguity function (t ,n , f , f ' ) M 1 M 1 m 0 m ' 0 M 1 M 1 2 dtdndfdf ' 2 j 4pdT / ( fm f 'm ') ( t , n ) e dfdf ' dtdn mm' mm' (t ,n ) dtdn 2 m 0 m ' 0 M 1 M 1 1 M m 0 m ' 0 2 Cross ambiguity function has constant energy Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 dT is the spacing between the transmitting antennas 42 Energy of the MIMO ambiguity function If dT is a multiple of the wavelength, 2 ( t , n , f , f ' ) d t d n dfdf ' M 2 dT is the spacing between the transmitting antennas If dT is a multiple of the wavelength, the energy of the MIMO ambiguity function is a constant. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 43 Energy of the MIMO ambiguity function If dT is a multiple of the wavelength, 2 ( t , n , f , f ' ) d t d n dfdf ' M 2 dT is the spacing between the transmitting antennas Recall that the signal component satisfies, (0,0, f , f ) df M , f – Because energy and the signal component are both constants, we can only spread the energy to minimize the peak. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 44 Energy of the MIMO ambiguity function If dT is a multiple of the wavelength, 2 ( t , n , f , f ' ) d t d n dfdf ' M 2 dT is the spacing between the transmitting antennas In general, the energy satisfies, 2dT / 2 2dT / M 2 2 ( t , n , f , f ' ) d t d n dfdf ' M (2dT / )2 (2dT / )2 2 2 In general, the energy of the MIMO ambiguity function is confined in a certain range. Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 45 Energy of the MIMO ambiguity function If dT is a multiple of the wavelength, 2 ( t , n , f , f ' ) d t d n dfdf ' M 2 dT is the spacing between the transmitting antennas In general, the energy satisfies, 2dT / 2 2dT / M 2 2 ( t , n , f , f ' ) d t d n dfdf ' M (2dT / )2 (2dT / )2 2 2 In general, the signal component satisfies, 2dT / M (0,0, f , f ) df 2dT / M 2d T / 2d T / Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 46 Symmetry properties Symmetry of the cross ambiguity function mm' (t ,n ) m'm (t ,n ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 47 Symmetry properties Symmetry of the cross ambiguity function mm' (t ,n ) m'm (t ,n ) Symmetry of the MIMO ambiguity function (t ,n , f , f ' ) (t ,n , f ' , f ) It suffices to show only half of the ambiguity function (t>0). Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 48 Linear frequency modulation (LFM) Linear frequency modulation u LFM m (t ) um (t )e jpkt 2 Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 49 Linear frequency modulation (LFM) Linear frequency modulation u LFM m (t ) um (t )e jpkt 2 Cross ambiguity function LFM mm ' (t ,n ) mm' (t ,n kt ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 50 Linear frequency modulation (LFM) Linear frequency modulation u LFM m (t ) um (t )e jpkt 2 Cross ambiguity function LFM mm ' (t ,n ) mm' (t ,n kt ) MIMO ambiguity function LFM Shear off (t ,n , f , f ' ) (t ,n kt , f , f ' ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 51 Linear frequency modulation (LFM) (t ,n , f , f ' ) n t Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 52 Linear frequency modulation (LFM) (t ,n kt , f , f ' ) (t ,n , f , f ' ) LFM n Shear off t Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 n t 53 Linear frequency modulation (LFM) (t ,n kt , f , f ' ) (t ,n , f , f ' ) LFM Shear off n The range resolution is improved by LFM. t n n t n t Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 t 54 Conclusion Properties of the MIMO ambiguity function – Signal component 2dT / M (0,0, f , f ) df 2dT / M 2d T / Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 2d T / 55 Conclusion Properties of the MIMO ambiguity function – Signal component 2dT / M (0,0, f , f ) df 2dT / M 2d T / – Energy 2d T / 2 2dT / M 2 2dT / M 2 ( t , n , f , f ' ) d t d n dfdf ' (2dT / )2 (2dT / )2 2 Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 2 56 Conclusion Properties of the MIMO ambiguity function – Signal component 2dT / M (0,0, f , f ) df 2dT / M 2d T / – Energy – Symmetry 2d T / 2 2dT / M 2 2dT / M 2 ( t , n , f , f ' ) d t d n dfdf ' (2dT / )2 (2dT / )2 2 2 (t ,n , f , f ' ) (t ,n , f ' , f ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 57 Conclusion Properties of the MIMO ambiguity function – Signal component 2dT / M (0,0, f , f ) df 2dT / M 2d T / – Energy – Symmetry – LFM 2d T / 2 2dT / M 2 2dT / M 2 ( t , n , f , f ' ) d t d n dfdf ' (2dT / )2 (2dT / )2 2 2 (t ,n , f , f ' ) (t ,n , f ' , f ) LFM (t ,n , f , f ' ) (t ,n kt , f , f ' ) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 58 Thank You! Q&A Any questions? Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 59 Properties of the signal component If the waveforms are orthogonal, the signal component will be a constant for all angle. For orthogonal waveforms, Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 um (t )um* ' (t )dt mm' (0,0, f , f ) M , f 60 Properties of the signal component For general waveforms, If dT 2 u m (t ) dt 1 is integer, (0,0, f , f ) df M , f The integration of the signal component is a constant if dT is a multiple of the wavelength. dT is the spacing between the transmitting antennas Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 61 Properties of the signal component In general, the integration of the signal component is confined in a certain range. For the general case, 2dT / M (0,0, f , f ) df 2dT / M 2d T / 2d T / Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 dT is the spacing between the transmitting antennas 62 MIMO Radar TX RX … SIMO Radar … MF MF MF u (t) RX TX MIMO Radar … u0(t) u1(t) … uM-1(t) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 MF … … MF … … MF … … 63 MIMO Radar Advantages – Better spatial resolution [Bliss & Forsythe 03] – Flexible transmit beampattern design [Fuhrmann & San Antonio 04] – Improved parameter identifiability [Li et al. 07] RX TX MIMO Radar … u0(t) u1(t) … uM-1(t) Chun-Yang Chen, Caltech DSP Lab | ICASSP 2008 MF … … MF … … MF … … 64
© Copyright 2025 Paperzz