Contributions to sector-level carbon intensity change: an integrated decomposition analysis Qunwei Wanga, Ye Hangb, Bin Sub,, Peng Zhoua a College of Economics and Management, Nanjing University of Aeronautics and Astronautics bSchool cEnergy of Business, Soochow University Studies Institute, National University of Singapore Outline 1. Introduction 2. Methodology 3. Case study 4. Conclusion 2 Introduction Background Environmental-economic balance requirement of tackling climate change Carbon intensity (i.e. carbon emissions per unit of GDP) is an important metric for measuring energy and environmental performance Carbon intensity reduction targets China: 13th Five Year Plan (2016-2020), reduce carbon intensity by 18% compared to 2015 level (State Council, 2016) India: Intended Nationally Determined Contribution (INDC), reduce carbon intensity by 33-35% by 2030 from 2005 level (UNFCCC, 2015) Driving factors? 3 Introduction Decomposition method Index decomposition analysis (IDA) Structural decomposition analysis (SDA) Attribution analysis (AA) (Ang and Zhang, 2000; Xu and Ang, 2013) (Rose and Casler, 1996; Su and Ang, 2012) (Choi and Ang, 2012; Su and Ang, 2014) Quantify the contributions of the individual components to an aggregate indicator change AA based on LMDI in IDA; AA based on generalized Fisher index in SDA The impacts of production technology related components cannot be directly investigated under the IDA and SDA frameworks Production-theoretical decomposition analysis (PDA) (Zhou and Ang, 2008) Production technology related components (technical efficiency & technological change) Potential effects deflated by technical efficiency PDA and IDA combined approach (Kim and Kim, 2012; Lin and Du, 2014) Production technology related components & Potential effects 4 Avoid misleading results of PDA in quantifying industrial structure and energy mix effects Introduction Summary of the studies combining PDA and IDA methods Application area Study Indicator Variable Effect SDF Level Period Input Output act cef √ √ 1. Kim and Kim (2012) C National 1990-2006 E E Y, C 2. Lin and Du (2014) EI Regional 2005-2010 Y E, K, L Y 3. Du and Lin (2015) E Regional 2003-2010 Y E, K, L Y √ 4. Du et al. (2017) C Regional 2006-2012 E E Y, C √ 5. Li et al. (2017) C Regional 2001-2011 E, Y E, K, L Y, C 6. Wang et al. (2017b) C 2005-2010 E, C E, L 7. Zhou et al. (2017) E 1991-2012/ 2001-2012 E, Y This study (PDA-IDA-AA) CI 2006-2014 E, Y National/Regi onal/Sectoral National/ Sectoral Sectoral pcef emx pei str e-pr √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ Y, C √ √ E, K, L Y √ E Y, C √ sub √ √ √ c-pr √ √ √ y-pr ros pros gap √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ The existing PDA and IDA combined approach cannot further capture the contribution of each region to the individual driving factor Note: 1. 2. 3. 4. The indicators “C”, “EI”, “E” and “CI” stand for the changes in carbon emissions, energy intensity, energy consumption and carbon intensity, respectively. The abbreviation “SDF” refers to Shephard distance function. The variables “E”, “K”, “L”, “Y” and “C” refer to energy, capital, labor, desirable output and undesirable output, respectively. The abbreviations “act”, “cef”, “pcef”, emx”, “pei”, “str”, “e-pr”, “y-pr”, “c-pr”, “sub”, “ros”, “pros” and “gap” refer to the various effects in the decomposition identity, i.e. activity, carbon emission coefficient, potential carbon emission coefficient, energy mix, potential energy intensity, economy structure, energy use productivity (i.e. energy use technical efficiency and energy use technological change), desirable output productivity (i.e. desirable output technical efficiency and desirable output technological change), carbon emission productivity, substitution, regional output structure, potential regional output structure and output gap effects, respectively. 5 Introduction Objective Proposing an integrated decomposition approach combining PDA, IDA and AA to explore the contributions to sector-level carbon intensity change Contribution The sector-level carbon intensity Developing an integrated decomposition framework combining PDA, IDA and AA PDA IDA Contribution Creating two new pre-defined factors, i.e. Driving factor 1 Driving factor 2 ... Driving factor k AA the potential regional output structure effect and the output gap effect Contribution Contribution Contribution Region 1 Region 1 Region 1 Region 2 Region 2 Region 2 Focusing on the decomposition of carbon intensity, which is less well documented compared to other indicators Region i Region i ... the single sectoral level ... Obtaining the decomposition results at ... Region i 6 Outline 1. Introduction 2. Methodology 3. Case study 4. Conclusion 7 Methodology Environmental production technology (Zhou and Ang, 2008) Sn E ,Y n S E , Y n n n n , C n : E n can produce (Y n , C n ) : z E I ,C n n i i i 1 I zY i 1 n Yi'n n i Cin' i i I zC i 1 i Ein' zi 0, i 1,..., I 8 Methodology Shephard distance function and estimation models Shephard input distance function DEn ( E n , Y n , C n ) sup : ( E n / , Y n , C n ) S n Shephard desirable output distance function Estimation models: DEA linear programming DYn ( E n , Y n , C n ) inf : ( E n , Y n / , C n ) S n 1 DEm ( E n , Y n , C n ) DEm ( E n , Y n , C n ) min I s.t. z E i 1 m i i zY i 1 m i i I (Zhou and Ang, 2008) zC i 1 i min I E n i' s.t. z E i 1 m i i I I Feasible 1 m i Yi' n Infeasible C n i' z i 0, i 1,..., I m, n t , t 1 zY i 1 m Yi'n m i Cin' i' i i I (Wang et al., 2015) zC i 1 i Ein' z i 0, i' 0, i 1,..., I m, n t , t 1 and m n 9 Methodology Decomposition approach — PDA Cijt Eijt Eit Yi t CI t t t t Ei Yi Y i 1 j 1 Eij I J t Emission coefficient, energy mix, energy intensity, regional output structure I J CI t i 1 j 1 Eijt Eit Yi t DYt ( E t , Y t , C t ) DYt 1 ( E t , Y t , C t ) I Y i i 1 Cijt t 1/2 t t t t t 1 t t t Eij DE ( E , Y , C ) DE ( E , Y , C ) Y i 1 i t D ( E , Y , C ) D ( E , Y , C ) t Y t t t t 1 Y t t t Yt D t 1 ( E t , Y t , C t ) D ( E , Y , C ) Et t t t DE ( E , Y , C ) t E t t 1/2 DYt ( E t , Y t , C t ) DYt 1 ( E t , Y t , C t ) Eit Yi t I t 1/2 t Dt ( E t , Y t , C t ) 1 t t t t tY1 t t t DY ( E , Y , C ) DY ( E , Y , C ) 1/2 1/2 Five categories (nine components) 1/2 1. Structure Energy mix (EMX) Potential regional output structure (PIS) 2. Intensity Potential energy intensity (PEI) Emission coefficient (CEF) 3. Output gap Output gap (ISG) 4. Energy use productivity Energy use technical efficiency (EUE) Energy use technological change (EST) 5. Desirable output productivity Desirable output technical efficiency (YOE) Desirable output technological change (YCT) 10 Methodology Decomposition approach — IDA CI t EMX t PIS t PEI t CEF t ISG t EUE t EST t YOE t YCT t CI t 1 EMX t 1 PIS t 1 PEI t 1 CEF t 1 ISG t 1 EUE t 1 EST t 1 YOE t 1 YCT t 1 Single-period CI t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 Dtot D D D D D D D EMX PIS PEI CEF ISG EUE EST t CI Structure >1 =1 <1 t ,t 1 DPEI Intensity I J S V PEI it 1 exp wij ln t P EI i 1 j 1 i Outout gap S V ij w t ,t 1 YOE t ,t 1 DYCT Desirable output productivity L Cijt C t , Cijt 1 C t 1 L C I J i 1 j 1 Energy use productivity D t ij C t , Cijt C t 1 Multi-period T CI T CI t 1 T 0,T t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 t ,t 1 Dtot 0 t DEMX DPIS DPEI DCEF DISG DEUE DEST DYOE DYCT CI t 0 CI t 0 0,T 0,T 0,T 0,T 0,T 0,T 0,T 0,T 0,T =DEMX DPIS DPEI DCEF DISG DEUE DEST DYOE DYCT T 0,T PEI D t ,t 1 DPEI t 0 11 Methodology Attribution analysis method (Choi and Ang, 2012) Single-period PEIit 1 t ,t 1 DPEI 1 rij 1 t PEI i 1 j 1 i I Multi-period I J 0,T PEI D rij I J w L PEI i 1 j 1 S V ij t 1 i t i t i PEI t ,t 1 , PEI DPEI T 1 D r i 1 j 1 t 0 wijS V PEI it t ,t 1 L PEI it 1 , PEI it DPEI J 0,t t ,t 1 PEI ij PEI it 1 1 t PEIi wijS V ,t ,t 1 PEI it t ,t 1 ij r t ,t 1 L PEI it 1 , PEI it DPEI wijS V ,t ,t 1 PEI i ,t L PEI i j t 1 i t ,t 1 , PEI it DPEI 12 Outline 1. Introduction 2. Methodology 3. Case study 4. Conclusion 13 Case study Data Industrial sector across 30 provinces in China (2006-2014) China Energy Statistical Yearbook, 2007-2015 China Statistical Yearbook, 2007-2015 2006 IPCC Guidelines for National Greenhouse Gas Inventories Variable Energy consumption (E) Industrial output (Y) Carbon emissions (C) 14 Case study Results and discussion — Decomposition results Cumulative effects on industrial carbon intensity change by five categories, 2006-2014 Dtot = 47.63% 52.18% 47.55% 15 Case study Results and discussion — Decomposition results Changes in industrial carbon intensity and its decomposition, 2006-2014 Aggregate Structure Intensity Period Output Energy use Desirable output gap productivity productivity Dtot DEMX DPIS DPEI DCEF DISG DEUE DEST DYOE DYCT 2006-2007 0.8869 1.0126 1.0565 0.8987 0.9898 1.0995 1.0173 0.9518 0.9574 0.9145 2007-2008 0.8153 0.9929 1.1189 0.8247 1.0008 1.1295 0.8713 1.1170 0.8546 0.9466 2008-2009 1.0503 0.9938 0.9986 1.0442 0.9838 0.9256 1.0176 1.0101 0.9956 1.0877 2009-2010 0.8228 1.0169 1.0191 0.8417 0.9632 1.2388 1.0753 0.9180 1.0003 0.8006 2010-2011 0.8394 1.0087 1.0275 0.8698 1.0096 1.2223 1.0032 0.9359 1.0291 0.7809 2011-2012 0.9685 1.0059 0.9724 0.9836 0.9845 1.0882 1.0210 0.9701 1.0724 0.8846 2012-2013 1.0318 1.0277 0.9978 1.0270 0.9829 0.9895 0.9795 1.0214 1.2669 0.7949 2013-2014 0.9990 1.0048 0.9657 1.0108 0.9886 1.0102 1.0073 0.9983 1.0514 0.9647 g-mean 0.9223 1.0079 1.0185 0.9339 0.9878 1.0830 0.9975 0.9886 1.0228 0.8916 2006-2014 0.5237 1.0646 1.1582 0.5785 0.9066 1.8931 0.9801 0.9126 1.1978 0.3993 47.63% 42.15% 89.31% 60.07% 16 Case study Results and discussion — Decomposition results Cumulative changes in industrial carbon intensity and its decomposition, 2006-2014 DPEI DYCT 17 Case study Results and discussion — Attribution results Multi-period attribution results of DYCT and DPEI, 2006-2014 (base: 2006, %) Province DYCT DPEI Province DYCT DPEI Beijing -0.50 -0.43 Hubei -2.59 -2.61 Tianjin -1.08 -0.27 Hunan -1.93 -2.97 Hebei -5.72 -1.49 Guangdong -2.81 -0.76 Shanxi -2.67 -1.37 Guangxi -1.41 -1.57 Inner Mongolia -3.17 -2.83 Hainan -0.19 -0.00 Liaoning -3.69 -3.71 Chongqing -1.28 -0.96 Jilin -1.47 -1.94 Sichuan -2.74 -2.32 Heilongjiang -1.15 -0.76 Guizhou -1.08 -1.82 Shanghai -1.17 0.09 Yunnan -1.31 -1.04 Jiangsu -4.47 -1.54 Shaanxi -1.41 -0.79 Zhejiang -1.93 -1.51 Gansu -0.78 -0.35 Anhui -1.72 -1.75 Qinghai 0.64 -0.30 Fujian -1.47 -0.97 Ningxia -1.66 -0.55 Jiangxi -1.13 -0.71 Xinjiang -1.36 0.18 Shandong -5.39 -3.18 Total change -60.07 -42.15 Henan -3.41 -3.90 18 Case study Results and discussion — Attribution results Single-period attribution results of DYCT, 2006-2014 (base: previous year, %) Province Beijing Tianjin Hebei Shanxi Inner Mongolia Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong Henan Hubei Hunan Guangdong Guangxi Hainan Chongqing Sichuan Guizhou Yunnan Shaanxi Gansu Qinghai Ningxia Xinjiang Total change 2007 -0.09 -0.10 -0.53 -0.31 -0.45 -0.53 -0.21 -0.24 -0.18 -0.74 -0.61 -0.20 -0.23 -0.14 -0.79 -0.55 -0.28 -0.26 -0.66 -0.23 -0.01 -0.10 -0.43 -0.23 -0.25 -0.12 -0.11 0.40 -0.21 -0.12 -8.55 2008 -0.09 -0.12 -0.65 -0.37 1.63 -0.54 -0.24 -0.20 -0.18 -0.68 1.31 -0.24 -0.25 -0.18 -0.83 -0.62 -0.34 -0.33 -0.79 -0.22 -0.02 -0.14 -0.41 -0.21 -0.26 -0.16 -0.13 -0.30 0.38 -0.15 -5.34 2009 0.08 0.14 0.69 0.38 0.45 0.58 0.21 0.20 0.19 0.70 0.18 0.25 0.27 0.20 0.88 0.60 0.36 0.37 0.91 0.21 0.02 0.19 0.35 0.20 0.27 0.17 0.14 0.20 -0.81 0.17 8.77 2010 -0.18 -0.33 -1.69 -0.86 -1.29 -1.31 -0.41 -0.33 -0.35 -1.31 -1.72 -0.53 -0.45 -0.34 -1.62 -1.05 -0.73 -0.64 -1.01 -0.41 -0.05 -0.36 -0.75 -0.36 -0.39 -0.40 -0.24 0.38 -0.78 -0.42 -19.94 2011 -0.16 -0.42 -1.84 -0.88 -1.08 -1.18 -0.60 -0.39 -0.41 -1.76 -0.82 -0.67 -0.59 -0.43 -2.10 -1.32 -1.14 -0.79 -1.06 -0.51 -0.06 -0.49 -1.11 -0.33 -0.51 -0.50 -0.28 0.31 -0.36 -0.46 -21.91 2012 -0.07 -0.21 -1.29 -0.63 -1.37 -0.76 -0.19 -0.13 -0.24 -0.56 -0.19 -0.30 -0.19 -0.21 -0.75 -0.41 -0.44 -0.27 -0.16 -0.17 -0.05 -0.32 -0.37 -0.11 -0.12 -0.35 -0.09 -1.08 -0.18 -0.31 -11.54 2013 -0.09 -0.33 -1.57 -0.81 -3.29 -0.94 -0.46 -0.37 -0.32 -1.41 -0.66 -0.57 -0.46 -0.38 -1.75 -0.99 -0.85 -0.57 -0.83 -0.50 -0.06 -0.55 -0.54 -0.32 -0.44 -0.41 -0.33 -0.16 0.02 -0.54 -20.51 2014 -0.04 -0.16 -1.52 -0.20 -0.11 -0.25 -0.06 -0.07 -0.10 -0.26 0.02 -0.11 -0.07 -0.11 -0.35 -0.15 -0.13 -0.10 0.16 -0.10 -0.05 -0.06 -0.46 -0.01 0.00 -0.28 -0.04 1.16 0.03 -0.10 -3.53 Mean -0.08 -0.19 -1.05 -0.46 -0.69 -0.62 -0.25 -0.19 -0.20 -0.75 -0.31 -0.30 -0.25 -0.20 -0.91 -0.56 -0.44 -0.32 -0.43 -0.24 -0.04 -0.23 -0.47 -0.17 -0.21 -0.26 -0.13 0.11 -0.24 -0.24 -10.32 19 Case study Results and discussion — Attribution results Single-period attribution results of DPEI, 2006-2014 (base: previous year, %) Province Beijing Tianjin Hebei Shanxi Inner Mongolia Liaoning Jilin Heilongjiang Shanghai Jiangsu Zhejiang Anhui Fujian Jiangxi Shandong Henan Hubei Hunan Guangdong Guangxi Hainan Chongqing Sichuan Guizhou Yunnan Shaanxi Gansu Qinghai Ningxia Xinjiang Total change 2007 -0.12 -0.07 -0.42 -0.71 -0.79 -0.89 -0.46 -0.22 0.00 -0.42 -0.36 -0.42 -0.19 -0.02 -0.77 -0.75 -0.32 -0.52 -0.20 -0.39 -0.01 -0.21 -0.52 -0.34 -0.27 -0.11 -0.17 -0.14 -0.24 -0.09 -10.13 2008 -0.22 -0.14 -2.05 -1.32 -0.88 -1.77 -0.48 -0.49 0.01 -0.58 -0.57 -0.60 -0.16 -0.33 -1.41 -1.54 -0.78 -0.51 -0.28 -0.49 -0.02 0.14 -0.64 -0.88 -0.32 -0.25 -0.16 -0.16 -0.26 -0.41 -17.53 2009 -0.02 0.20 1.25 0.49 -0.32 0.80 -0.22 0.59 0.03 0.03 0.20 -0.03 -0.03 0.11 0.30 0.53 -0.40 -0.18 0.06 0.14 0.04 -0.47 -0.21 0.27 0.40 -0.02 0.08 0.04 0.10 0.64 4.42 2010 -0.04 -0.17 -0.82 -0.98 -1.05 -1.36 -0.46 -0.63 -0.01 -0.66 -0.55 -0.71 -0.41 -0.83 -0.80 -1.02 -0.23 -1.09 -0.25 -0.59 -0.03 -0.43 -0.54 -0.22 -0.66 -0.24 -0.09 -0.14 -0.20 -0.62 -15.83 2011 -0.05 -0.09 -1.28 -0.67 -0.21 -1.67 -0.21 -0.40 -0.10 -1.09 -0.50 -0.48 -0.24 -0.12 -0.89 -1.30 -0.50 -0.54 0.08 -0.46 0.01 -0.18 -0.84 -0.23 0.01 -0.25 -0.38 -0.14 -0.10 -0.22 -13.02 2012 -0.01 -0.10 -0.09 0.22 -0.53 -0.35 -0.03 0.09 -0.02 -0.11 0.10 -0.05 -0.04 -0.01 -0.14 -0.66 -0.32 -0.46 -0.13 -0.03 -0.02 1.86 -1.22 -0.18 -0.13 -0.10 0.24 0.10 -0.06 0.54 -1.64 2013 -0.03 0.08 1.97 1.62 0.07 1.04 -0.51 0.07 0.32 1.03 -0.08 0.19 -0.27 0.45 -0.33 -0.03 -0.95 -0.63 -0.18 -0.04 0.05 -2.17 1.31 -0.63 -0.51 -0.04 0.13 0.11 0.08 0.59 2.70 2014 -0.01 -0.05 0.47 0.58 0.34 -0.11 -0.15 0.20 -0.07 0.16 -0.09 0.03 0.05 0.00 0.15 -0.22 -0.15 -0.11 -0.06 -0.09 -0.01 0.13 -0.24 -0.22 0.14 -0.04 0.02 0.05 0.10 0.26 1.08 Mean -0.06 -0.04 -0.12 -0.10 -0.42 -0.54 -0.32 -0.10 0.02 -0.21 -0.23 -0.26 -0.16 -0.09 -0.48 -0.62 -0.46 -0.50 -0.12 -0.24 0.00 -0.17 -0.36 -0.30 -0.17 -0.13 -0.04 -0.03 -0.07 0.09 -6.24 20 Case study Results and discussion — Attribution results Percentage share of each province in the multi-period attribution results of DYCT and DPEI, 2006-2014 (%) high high low high 21 Case study Results and discussion — Attribution results Classification of provinces based on percentage share of each province in the multi-period attribution results of DYCT and DPEI, 2006-2014 Type Ⅰ (8 provinces) Type Ⅱ (2 provinces) Type Ⅲ (14 provinces) Type Ⅳ (6 provinces) 22 Outline 1. Introduction 2. Methodology 3. Case study 4. Conclusion 23 Conclusion Contribution The integrated decomposition approach extends the existing PDA and IDA combined approach by quantifying the contribution of each region attributes to the individual driving factor using the AA method. This helps set carbon intensity reduction policies targeting a specific factor at the regional level. The decomposition model adds two new effects, i.e. the potential regional output structure effect and the output gap effect. This may provide insights to different aspects of carbon intensity reduction policymaking. This study focuses on decomposing sector-level carbon intensity change, which is relatively less well documented and understood compared to other indicators/levels in the existing PDA and IDA combined studies. 24 Conclusion Case study Of the five decomposition categories, desirable output productivity and intensity are the leaders in promoting the reduction of industrial carbon intensity. Of the nine decomposition components, desirable output technological change and potential energy intensity factors play dominant roles in decreasing the industrial carbon intensity. The main contributors to the negative value of the desirable output technological change effect are Hebei, Shandong, Jiangsu, Liaoning and Henan. The top five provinces contributing to the negative value of the potential energy intensity effect are Henan, Liaoning, Shandong, Henan and Inner Mongolia. Provinces were divided into four types based on the multi-period attribution results; different industrial carbon intensity reduction policies should be implemented in different types of provinces. 25 Conclusion- Extension Application Sector-level Carbon intensity Economy-wide Other absolute and intensity indicators, e.g. energy, water, air emissions and waste Methodology IDA framework Temporal PDA-IDA/SDA-AA SDA framework Spatial (Ang et al., 2015; Su and Ang, 2016 ) Spatial-Temporal (Ang et al., 2016) 26 Thank you! Qunwei Wang ([email protected]) Bin Su ([email protected] ; [email protected]) 27
© Copyright 2026 Paperzz