Chapter 07.03 Simpson’s 1/3 Rule for Integration-More Examples Mechanical Engineering Example 1 A trunnion of diameter 12.363 has to be cooled from a room temperature of 80F before it is shrink fit into a steel hub (Figure 1). Figure 1 Trunnion to be slid through the hub after contracting. The equation that gives the diametric contraction, in inches of the trunnion in dry-ice/alcohol (boiling temperature is 108F ) is given by: 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 a) Use Use Simpson’s 1/3 Rule to find the approximate value of D . b) Find the true error, E t , for part (a). c) Find the absolute relative true error for part (a). Solution a) ba ab f (a) 4 f f (b) 6 2 a 80 b 108 ab 14 2 f (T ) 12.363 1.2278 10 11T 2 6.1946 10 9 T 6.015 10 6 D 07.03.1 07.03.2 Chapter 07.03 f 80 12.363 1.2278 10 11 80 6.1946 10 9 80 6.015 10 6 2 5 7.9519 10 2 f 108 12.363 1.2278 10 11 108 6.1946 10 9 108 6.015 10 6 5 6.4322 10 2 f 14 12.363 1.2278 10 11 14 6.1946 10 9 14 6.015 10 6 5 7.3262 10 b a ab D f a 4 f f b 6 2 108 80 f 80 4 f 14 f 108 6 188 5 5 5 7.9519 10 4 7.3262 10 6.4322 10 6 0.013689 in b) The exact value of the above integral is 108 1.2278 10 D 12.363 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 0.013689 in so the true error is Et True Value Approximat e Value 0.013689 0.013689 0.0000 c) The absolute relative true error, t , would then be t True Error 100 % True Value 0.0000 100 % 0.013689 0.0000 % Example 2 A trunnion of diameter 12.363 has to be cooled from a room temperature of 80F before it is shrink fit into a steel hub (Figure 1). The equation that gives the diametric contraction, in inches of the trunnion in dry-ice/alcohol (boiling temperature is 108F ) is given by: 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 a) Use four segment Simpson’s 1/3 Rule to find the contraction. b) Find the true error, E t , for part (a). Simpson’s 1/3 Rule for Integration-More Examples: Mechanical Engineering 07.03.3 c) Find the absolute relative true error for part (a). Solution n 1 n2 ba a) D f (T0 ) 4 f (Ti ) 2 f (Ti ) f (Tn ) 3n i 1 i 2 i odd i even n4 a 80 b 108 ba h n 108 80 4 47 f (T ) 12.363 1.2278 10 11T 2 6.1946 10 9 T 6.015 10 6 n 1 n2 ba D f T0 4 f Ti 2 f Ti f Tn 3n i 1 i 2 i odd i even 3 2 108 80 f 80 4 f Ti 2 f Ti f 108 34 i 1 i 2 i odd i even 188 f (80) 4 f (T1 ) 4 f (T3 ) 2 f (T2 ) f (108) 12 188 f (80) 4 f (33) 4 f (61) 2 f (14) f (108) 12 7.9519 10 5 47.6725 10 5 47.0257 10 5 15.667 5 5 27.3321 10 6.4322 10 0.013689 in Since f T0 f 80 12.363 1.2278 10 11 80 6.1946 10 9 80 6.015 10 6 7.9519 10 2 f T1 f 80 47 f 33 12.363 1.2278 10 11 33 6.1946 10 9 33 6.015 10 6 7.6725 10 f T2 f 33 47 5 2 5 07.03.4 Chapter 07.03 f (14) 12.363 1.2278 10 11 14 6.1946 10 9 14 6.015 10 6 2 7.3262 10 5 f T3 f 14 47 f (61) 12.363(1.2278 10 11 (61) 2 6.1946 10 9 (61) 6.015 10 6 ) 7.0257 10 5 f T4 f Tn f 108 12.363 1.2278 10 11 108 6.1946 10 9 108 6.015 10 6 2 6.4322 10 5 b) The exact value of the above integral is 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 0.013689 in so the true error is Et True Value Approximat e Value 0.013689 0.013689 0.0000 c) The absolute relative true error, t , would then be True Error 100 % True Value 0.0000 100 % 0.013689 0.0000 % t Table 1 Values of Simpson’s 1/3 Rule for Example 2 with multiple segments. n Approximate Value Et t % 2 4 6 8 10 0.013689 0.013689 0.013689 0.013689 0.013689 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
© Copyright 2026 Paperzz