The Chain Rule Lesson 4.4 Derivatives of Composite Functions How do you differentiate a composite (i.e. f (g(x)) ) function? The Chain Rule – If f (u) is a differentiable function of u and u = g(x) is a differentiable function of x, then f(g(x)) is a differentiable function of x, and d [ f ( g ( x))] f ' ( g ( x)) g ' ( x) dx Ex: Find f’(x) when f (x) =√(x2 + 3). Let u = x2 + 3 = g(x) , so g’(x) = (2)(x2-1) + d/dx (3) = 2x 1 1 ½-1) = u , so f ’( u) = (½)(u Then f(u) = √u = = ½ 2√u 2√x2 + 3 So, f ’(x) = f’(g(x))g’(x) 1 2x x (2x) = = = 2√x2 + 3 2√x2 + 3 √x2 + 3 More Chain Rule Examples Find f’(x) when f (x) =(3x – 2x2)3. Let u = 3x – 2x2 , so u’ = 3(1)x 1-1 – 2(2)x2-1 = 3 – 4x Then f(u) = u 3 , so f ’(u) = (3)(u3-1) = 3u2 So, f ’(x) = f ’(u)u’ = 3u2 (3 – 4x) = 3(3x – 2x2)2 (3 – 4x) 3 Find all points on the graph of f (x) = (x2 – 1)2 for which f ’(x) = 0 and those for which f ’(x) does not exist. 2 3 2 2 2 f (x)= (x - 1) = (x - 1)3 = 2x Let u = x2 – 1 , so u’ = (2)x 2-1 – d/dx(1) Then f(u) = u ⅔ , so f ’(u) = (⅔)(u⅔ -1) = 2 3u⅓ 2 4x 4x So, f ’(x) = f = (2x) = = 3 ⅓ ⅓ ’(u)u’ 3u 3u 3 (x2 – 1) If f ’(x) = 0, then x = 0 and f ’(x) cannot exist if x = ±1 Chain Rule & Product Rule Together Ex: Find k’(x) when k(x) =x2√(1 – x2). Product Rule d [ f ( x) g ( x)] f ' ( x) g ( x) g ' ( x) f ( x) dx Let f(x) = x2 , so f’(x) = (2)(x2-1) = 2x -x 2 And g(x) = √(1 – x ) , so g’(x) … = √(1-x2) Chain Rule y ' f ' (u ) u ' Let u = 1 – x , then u’ = -2x 1 And f(u) = √u , then f ’(u) = 2√u 1 And so y’ = (-2x) 2√u -2x -x = = 2√(1√(1-x2) 2 2 Chain Rule & Product Rule Together Ex: Find k’(x) when k(x) =x2√(1 – x2). Product Rule d [ f ( x) g ( x)] f ' ( x) g ( x) g ' ( x) f ( x) dx Let f(x) = x2 , so f’(x) = (2)(x2-1) = 2x -x 2 And g(x) = √(1 – x ) , so g’(x) … = √(1-x2) So, k’(x) = f’(x)g(x) + g’(x)f(x) -x (x2) = (2x)√(1 – x2) + √(1-x2) √(1-x2) -x3 2 = (2x)√(1 – x ) + 2 √(1-x ) √(1-x2) x = [2√(1 – x2)√(1-x2) + -x2] = √(1-x2) = 2x - 3x2 √(1 - x2) 2x(1 - x2) – x3 √(1 - x2) Lesson Practice 1) Find f ’(x) if f (x) = (6x – 5)3 Exercises Pg. 289 (7, 13, 18, 25, 29, 35, 41, 54, 60, 61, 63)
© Copyright 2026 Paperzz