Mathematical Analysis on Parabolic
System with Strong
Cross-Diffusion
(joint work with Prof. Ansgar Juengel)
CHEN, Li (陈丽)
Fachbereich Mathematik und Informatik, Johannes Gutenberg-Universitat,
Mainz, Germany.
Department of Mathematical Science,Tsinghua University,
Beijing, P. R. China.
http://faculty.math.tsinghua.edu.cn/faculty/~lchen/
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
1
Parabolic System
Diffusion Matrix and Potential
We will focus on the dicussion on the influences from the diffusion
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
2
Population dynamics
tu- d1Mu-r11Mu2- r12M(uv) u(a1- b1u- c1v)
tv - d2Mv- r21M(uv)- r22Mv2 v(a2- b2u- c2v)
Kinetic
(ODE)
! Diffusion ! Cross-Diffusion
Lotka-Volterra competition system
(PDE)
(strong coupled PDE)
Shigesada et al.Theor. Biol.,1979,
ai¸0 : the intrinsic growth rate of the i-th species
b1,c2¸ 0 : the coefficients of intra-specific competition
b2,c1¸ 0 : the coefficients of inter-specific competition
The solutions of Kinetic system depend on the constants A,B and C in various cases.
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
3
Boundary and Initial conditions for PDE system
Diffusion
(Heat equation)
-t u+M u=0, in W£ (0,1)
r¢g=0 on W
u(x,0)=y(x) in W
u(x,t) is smooth for t>0 and
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
4
• 9 ! global smooth non-negative solution; (well known)
• Long time behavior, P. N. Brown, P. de Mottonim (1980’s).
A>max{B,C}; (u,v)! (a1/b1,0)
A<min{B,C}; (u,v)! (0,a2/c2)
B>A>C (weak competition); (u,v)! (u*,v*)=
B<A<C (strong competition).
(a1/b1,0) and (0,a2/c2) are both locally stable
(u*,v*) is unstable
W convex,
no stable positive steady-state solution (Kishimoto, Weinberger,1985)
W dumb-bell type, at least one stable positive… (Matano, Mimura,1983)
……. (Y. Kan-on, E. Yanagida, M. Mimura, S. I. Ei, Q. Fang, H. Ninomiya……)
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
5
PDE with strong cross-diffusion and self-diffusion
Some known results on time dependent case
r11=r22=0 and no cross-diffusion for the second species
(global exis. & qualitative behavior)
•
Pozio & Tesei, 1990, Nonlin. Anal.;
•
Lou, Ni, & Wu, 1996, Adv. Math., Beijing;
•
Redlinger, 1995, J. Diff. Eqs.;
•
Choi, Lui, & Yamada, 2003, Discrete Contin. Dyn. Syst.
•
……
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
6
r11=r22=0 and “small” cross-diffusion
• (d1=d2=0,1-D, global exis.) Kim, 1984, Nonlin. Anal.;
• (Global exis.) Deuring, 1987, Math. Z;
xTA(u,v)x¸min{d1,d2}|x|2
•
(2-D, Global exis.) Yagi, 1993, Nonlin. Anal.;
•
(Global exis.) Galiano, Garzon &Juengel, 2001, Rev.
Real Acad. Ciencias, Serie A. Mat .
For any di>0,rij>0
•
(1-D, Global exis.) Galiano, Garzon &Juengel, 2003,
Num. Math.;
•
(Multi-D. Global exis.) L, Chen & Juengel, 2004, SIAM J.
Math. Anal. (Idea will be introduced later)
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
7
Diffusion Matrix
Main Features
• Nonsymetric
• Nonpositive definite
• Degenerate (d1=d2=0)
It is hard to use classical techenics (such as maximum principle to get a priori
estimates) on such system due to strong cross-diffusion.
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
8
Idea (Approximation+A priori estimates)
• Exponential transformation u=exp{fu} , v=exp{fv},
Symetric and non-negative definite.
New difficulties: time derivatives
Plasma-Cargese, 26/10/04-29/29/04
t[exp{fu}], t[exp{fv}].
strong cross-diffusion parabolic system
9
• Relative entropy
y(x)=x(ln x-1)+1
Entropy inequality
It can be formally derived by using ln u and ln v as the test function in
the weak formulation of the problem.
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
10
• Compactness Argument (omitted)
• Approximation
Semi-discretization in time difficulty: cross-diffusion
M(uv)
Approximated by finite difference
Besides these, we need other regularizations, such as
Fully discretization both in time and space
Finite difference in time
Decomposition: (0,T]=[ k=1K((k-1)t,kt], t=T/K
Galerkin method in space
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
11
Existence of the weak solution
Asumptions
W2 C0,1 , N¸ 1, di¸ 0, rij>0, ai,bi,ci¸ 0, i,j=1,2.
u0,v02 LY(W), u0,v0¸ 0.
The existence can be also obtained in the case without self-diffusion, which is useful
to study the pattern formation. (introduce later)
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
12
Q: Long time behavior of the solution
r21=0, (trianglular cross-diffusion case) D. Le, L. Nguyen, T. Neuyen, (2002,2003)
Few other results until now…
Steady state solution
(Y.Lou, W.Ni, H. Matano, M. Mimura, Y. Nishiura, A. Tesei, T. Tsujikawa,Y.Kan-on…)
Large di (diffusion) or rii (self-diffusion)
no non-constant steady state solution (NCSS)
In weak competition case, if r12, r21 (cross-diffusion) are samll,
NCSS
In weak competition case, if r12 or r21 (cross-diffusion) large,
NCSS exists
No
Do nonconstant steady solution exist if both cross-diffusion r12
and r21 are large and qualitatively similar?
There are also some results on steady state solution and some stability results with
vanishing Dirichlet boundary data.
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
13
• Entropy-entropy production method for long time behavior
It holds that without self-diffusion(more reasonable)
This inequality can be obtained directly from the approximate problem
by choosing appropriate test function.
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
14
• logarithmic Sobolev inequality
)
• Csiszar-Kullback inequality for logarithmic relative entropy
)
• Discussion on Steady state solution
)
No non-constant steady state solution
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
15
Long time behavior of the weak solution
Steady state solution
a1 ,a2 ,b1 ,c2 > 0, c1= b2= 0
No Non-constant steady state solution
The only possible steady state solution is
(u*,v*)=(a1/b1,a2/c2).
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
16
Conclusion
Existence
No restriction on the diffusion coefficients di and rij
The global existence result holds in any space dimension
The method provides the existence of non-negative solution
The degenerate case di=0 and no self-diffusion case rii can
be also treated
Long time behavior
Give some convergence rate of the entropy
No NCSS exist even with strong cross-diffusion in the
case of vanishing source terms or vanishing inter-specific
competition
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
17
Future problems
• Uniqueness and regularity of the weak
solution
• Long time behavior in more general cases
• ……
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
18
Thank you!
谢谢!
Plasma-Cargese, 26/10/04-29/29/04
strong cross-diffusion parabolic system
19
© Copyright 2025 Paperzz