F - 강원대학교 컴퓨터과학전공

이산수학(Discrete Mathematics)
 함수 (Functions)
2013년 봄학기
강원대학교 컴퓨터과학전공 문양세
함수의 정의 (1/2)
1.8 Functions
From calculus, you are familiar with the concept of a realvalued function f, which assigns each number xR to a
particular value y=f(x), where yR.
(여러 분이 대수학에서 이미 익숙한 실수 집합에 대한 함수로 이해할 수 있다.)
But, the notion of a function can also be generalized to the
concept of assigning elements of any set to elements of any set.
(함수에 대한 표기는 비단 실수 집합이 아닌 임의의 집합들을 대상으로 일반화시
킬 수 있다.)
Page 2
Discrete Mathematics
by Yang-Sae Moon
함수의 정의 (2/2)
1.8 Functions
Definition: For any sets A, B, we say that a function f from (or
“mapping”) A to B (f:AB) is a particular assignment of exactly
one element f(x)B to each element xA.
(함수 f는 A의 원소 각각에 대해서 B의 원소를 단 하나만 대응시킴)
Definition: A partial function f assigns zero or one elements of
B to each element xA.
(부분함수 f는 A의 일부(or 전체) 원소 각각을 B의 원소 단 하나에 대응시킴)
Page 3
Discrete Mathematics
by Yang-Sae Moon
Graphical Representations
1.8 Functions
Functions can be represented graphically in several ways:
f
a•
A
f
•
b
B
B
•
•
•
•
A
•
•
•
•
•
Bipartite Graph
Like Venn diagrams
y
x
Plot
Page 4
Discrete Mathematics
by Yang-Sae Moon
Examples of Functions (We’ve seen so far)
1.8 Functions
A proposition can be viewed as a function from “situations”
to truth values {T,F} (명제 함수)
• A logic system called situation theory.
• p=“It is raining.”; s=our situation here, now
• p(s){T,F}
A propositional operator can be viewed as a function from ordered
pairs of truth values to truth values: (명제 연산자)
• ((F,T)) = T
• →((T,F)) = F
A set operator such as , , can be viewed as a
function from pairs of sets to sets. (집합 연산자)
• Example: ({1,3},{3,4}) = {3}
Page 5
Discrete Mathematics
by Yang-Sae Moon
Function Terminologies
1.8 Functions
If f:AB, and f(a)=b (where aA & bB), then:
• A is the domain of f.
[정의역]
• B is the codomain of f.
[공역]
• b is the image of a under f.
[상]
• a is a pre-image of b under f.
[원상]
(In general, b may have more than 1 pre-image.)
• The range RB of f is {b | a f(a)=b }.
Page 6
[치역]
Discrete Mathematics
by Yang-Sae Moon
Range versus Codomain (치역과 공역) (1/2)
1.8 Functions
The range of a function might not be its whole codomain.
(함수의 치역은 전체 공역이 아닐 수(다를 수) 있다.)
The range is the particular set of values in the codomain
that the function actually maps elements of the domain to.
(치역은 공역의 부분집합으로서, 함수에 의해 실제 매핑이 일어난 원소의 집합이다.)
Page 7
Discrete Mathematics
by Yang-Sae Moon
Range versus Codomain (치역과 공역) (2/2)
1.8 Functions
Example
• Suppose I declare to you that: “f is a function mapping students in
this class to the set of grades {A, B, C, D, F}.”
(함수 f는 {A, B, C, D, F}의 성적을 부여하는 함수라 하자.)
• At this point, you know f’s codomain is: {A, B, C, D, F}, and its
range is unknown!.
(성적을 부여하기 전에 공역은 {A, B, C, D, F}로 알 수 있으나, 그 치역은 알지 못한다.)
• Suppose the grades turn out all As and Bs.
(공부들을 잘해서 모두 A와 B를 주었다고 하자.)
• Then the range of f is {A, B}, but its codomain is still {A, B, C, D, F}.
(치역은 {A, B}로 결정 되었지만, 공역은 그대로 {A, B, C, D, F}이다.)
Page 8
Discrete Mathematics
by Yang-Sae Moon
Function Operators (Example)
1.8 Functions
, × (“plus”, “times”) are binary operators over R.
(Normal addition & multiplication.)
If f,g:RR, then the followings hold: (정의)
• (f  g):RR, where (f  g)(x) = f(x)  g(x)
• (f×g):RR, where (f × g)(x) = f(x) × g(x)
Example (예제 4)
• f,g:RR, f(x) = x2, g(x) = x – x2
• (f  g)(x) = f(x)  g(x) = (x2)  (x – x2) = x
• (f×g)(x) = f(x)×g(x) = (x2)×(x – x2) = x3 – x4
Page 9
Discrete Mathematics
by Yang-Sae Moon
Images of Sets under Functions (집합에 대한 상)
1.8 Functions
Given f:AB, and SA,
The image of S under f is simply the set of all images of
the elements of S. (S의 image는 S의 모든 원소의 image의 집합)
f(S) = {f(s) | sS} = {b |  sS(f(s)=b)}.
Note the range of f can be defined as simply the image of
f’s domain!
(f의 치역은 f의 정의역에 대한 상(image)로 정의할 수 있다.)
Example (예제 5)
• A = {a, b, c, d, e}, B = {1, 2, 3, 4}, S = {b, c, d}
• f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, f(e) = 1
 f(S) = {1, 4}
Page 10
Discrete Mathematics
by Yang-Sae Moon
One-to-One Functions (단사함수)
1.8 Functions
A function is one-to-one (1-1) or injective iff every
element of its range has only 1 pre-image.
(치역의 모든 원소는 오직 하나의 역상(pre-image)를 가진다.)
Formally: given f:AB,
“x is injective” = (x,y: xy  f(x)f(y)).
Only one element of the domain is mapped to any given
one element of the range.(정의역의 한 원소는 치역의 한 원소에 대응)
• Domain & range have same cardinality. What about codomain?
( may be larger)
Page 11
Discrete Mathematics
by Yang-Sae Moon
One-to-One Illustration
1.8 Functions
Bipartite (2-part) graph representations of functions that
are (or not) one-to-one:
•
•
•
•
•
•
•
•
•
One-to-one
•
•
•
•
•
•
•
•
•
Not one-to-one
Page 12
•
•
•
•
•
•
•
•
•
Not even a
function!
Discrete Mathematics
by Yang-Sae Moon
Sufficient Conditions for 1-1ness
1.8 Functions
For functions f over numbers,
• f is strictly (or monotonically) increasing iff x>y  f(x)>f(y) for all
x,y in domain; (strictly increasing function, 단조 증가 함수)
• f is strictly (or monotonically) decreasing iff x>y  f(x)<f(y) for all
x,y in domain; (strictly decreasing function, 단조 감소 함수)
If f is either strictly increasing or strictly decreasing, then
f is one-to-one. E.g. x3
• Converse is not necessarily true. E.g. 1/x
Page 13
Discrete Mathematics
by Yang-Sae Moon
Onto Functions (전사함수)
1.8 Functions
A function f:AB is onto or surjective iff its range is equal
to its codomain (bB, aA: f(a)=b). (치역과 공역이 동일하다.)
An onto function maps the set A onto (over, covering) the
entirety of the set B, not just over a piece of it.
E.g., for domain & codomain R, x3 is onto, whereas x2
isn’t. (Why not?)
Page 14
Discrete Mathematics
by Yang-Sae Moon
Onto Illustration
1.8 Functions
Some functions that are or are not onto their codomains:
•
•
•
•
•
•
•
•
•
Onto
(but not 1-1)
•
•
•
•
•
•
•
•
•
Not Onto
(or 1-1)
•
•
•
•
•
•
•
•
Both 1-1
and onto
Page 15
•
•
•
•
•
•
•
•
•
1-1 but
not onto
Discrete Mathematics
by Yang-Sae Moon
Bijection (전단사함수)
1.8 Functions
A function f is a one-to-one correspondence, or a bijection,
or reversible, or invertible, iff it is both one-to-one and
onto. (전사함수이면서 단사함수이면, 이를 전단사함수라 한다.)
•
•
•
•
•
•
•
•
both 1-1 and onto
 bijection
Page 16
Discrete Mathematics
by Yang-Sae Moon
Identity Functions (항등함수)
1.8 Functions
For any domain A, the identity function I:AA (or IA) is
the unique function such that aA: I(a)=a.
(항등함수는 정의역의 각 원소(a)를 자기 자신(I(a)=a)에 대응시키는 함수이다.
Some identity functions we’ve seen:
• ing 0, ·ing by 1
• ing with T, ing with F
• ing with , ing with U.
Note that the identity function is both one-to-one and
onto (bijective). (모든 원소에 대해 자기 자신을 대응시키므로 당연!)
Page 17
Discrete Mathematics
by Yang-Sae Moon
Identity Function Illustration
•
•
•
•
•
•
•
1.8 Functions
y
•
•
x
Domain and range
Page 18
Discrete Mathematics
by Yang-Sae Moon
Composite Operator (함수의 합성) (1/2)
1.8 Functions
For functions g:AB and f:BC, there is a special
operator called compose (“◦”).
• It composes (creates) a new function out of f, g by applying f to the
result of g. (함수 g의 결과에 대해 함수 f를 적용한다.)
• (f◦g):AC, where (f◦g)(a) = f(g(a)).
 정의
• Note g(a)B, so f(g(a)) is defined and C.
• Note that ◦ (like Cartesian , but unlike +, , ) is non-commuting.
(Generally, f◦g  g◦f.) (일반적으로, 교환법칙은 성립하지 않는다.)
Page 19
Discrete Mathematics
by Yang-Sae Moon
Composite Operator (함수의 합성) (2/2)
1.8 Functions
예제
• f,g:NN, f(x) = 2x+3, g(x) = 3x+2
• (f◦g)(x) = f(g(x)) = 2(3x+2)+3 = 6x+7

• (g◦f)(x) = g(f(x)) = 3(2x+3)+2 = 6x+11
Page 20
Discrete Mathematics
by Yang-Sae Moon
Composition Illustration
1.8 Functions
(f◦g)(a)
g(a)
a
f(b)
g(a) = b
g
A
f(g(a))
f
B
C
f◦g
Page 21
Discrete Mathematics
by Yang-Sae Moon
Inverse Functions (역함수) (1/2)
1.8 Functions
For bijections f:AB, there exists an inverse of f, written
f1:BA, which is the unique function such that f1◦f=I.
(전단사함수 f에서 f(a) = b가 성립할 때, 함수 f의 역함수 f1는 B의 모든 원소 b
에 대해 A의 원소 a를 대응시키는 함수이다.)
f(a)
-1
a = f (b)
f-1(b)
b = f(a)
f
A
f-1
Page 22
B
Discrete Mathematics
by Yang-Sae Moon
Inverse Functions (역함수) (2/2)
1.8 Functions
예제
• f:ZZ, f(x) = x + 1
• f is a strictly increasing function, and thus, f is bijection.
• Let f(x) = y, then y = x + 1 and x = y – 1.
• Therefore, f-1(y) = y – 1.
Page 23
Discrete Mathematics
by Yang-Sae Moon
Graphs of Functions (1/2)
1.8 Functions
We can represent a function f:AB as a set of ordered
pairs {(a, f(a))| aA} called a graph.
(함수 f의 그래프는 (a, f(a))로 구성되는 순서쌍(pair)의 집합이다.)
Note that a, there is only 1 pair (a, f(a)).
For functions over numbers, we can represent an ordered
pair (x, y) as a point on a plane. A function is then drawn
as a curve (set of points) with only one y for each x.
(수에 대한 함수인 경우, 함수를 평면상에 그릴 수 있다.)
Page 24
Discrete Mathematics
by Yang-Sae Moon
Graphs of Functions (2/2)
1.8 Functions
예제
• f:ZZ, f(x) = x2
• graph of f = {…, (-2,4), (-1,1), (0,0), (1,1), (2,4), …)
●
●
●
●
●
●
●
Page 25
Discrete Mathematics
by Yang-Sae Moon
A Couple of Key Functions
1.8 Functions
In discrete math, we will frequently use the following
functions over real numbers:
• x (“floor of x”) is the largest (most positive) integer  x.
(실수 x에 대해서, x와 같거나 x보다 작은 수 중에서 x에 가장 가까운 정수)
• x (“ceiling of x”) is the smallest (most negative) integer  x.
(실수 x에 대해서, x와 같거나 x보다 큰 수 중에서 x에 가장 가까운 정수)
예제
• 1/2 = 0, 1/2 = 1, 3.1 = 3, 3.1 = 4, 7 = 7, 7 = 7
• -1/2 = -1, -1/2 = 0, -3.1 = -4, -3.1 = -3
Page 26
Discrete Mathematics
by Yang-Sae Moon
Visualizing Floor & Ceiling Functions
1.8 Functions
Real numbers “fall to their floor” or “rise to their ceiling.”
Note that if xZ,
• x   x (1.5 = 2   1.5 = 1)
3
• x   x (1.5 = 1   1.5 = 2)
2
Note that if xZ,
1
• x = x = x (2 = 2 = 2)
0
1
Note that if xR,
• x =  x (1.5 = 2 =  1.5)
• x =  x (1.5 = 1 =  1.5)
Page 27
2
3
1.6=2
.
1.6 .
.1.6=1
.
.
1.4= 1
1.4
.1.4= 2
3.. .
3=3= 3
Discrete Mathematics
by Yang-Sae Moon
Plots with Floor/Ceiling: Example
1.8 Functions
Plot of graph of function f(x) = x/3:
Set of points (x, f(x))
+2
3
+3
x
2
Page 28
Discrete Mathematics
by Yang-Sae Moon
Bits versus Bytes
1.8 Functions
How many bytes are necessary to store 100 bits?
• 1 byte = 8 bits
• 100/8 = 12.5 = 13 bytes
Page 29
Discrete Mathematics
by Yang-Sae Moon
Homework #2
1.8 Functions
Page 30
Discrete Mathematics
by Yang-Sae Moon