1. page 9, Eigenvalues and Eigenvectors (21/9/2001) Original version: Let P x1 x 2 x n be the matrix whose columns are the n eigenvectors of A. Then AP A x1 A x 2 A x n 1 x1 2 x 2 n x n 1 x1 02 0n 01 2 x 2 03 0n 01 0n 1 n x n Revised version: Let P x1 x 2 x n be the matrix whose columns are the n eigenvectors of A. Then AP A x1 A x 2 A x n 1 x 1 2 x 2 n x n 1 x 1 0 x 2 0 x n 0 x1 2 x 2 0 x 3 0 x n 0 x 1 0 x n 1 n x n 2. The following example of solving a system of linear equations has been added to page 13 of the note of Matrix Algebra. Example Suppose the following matrix in reduced row echelon form is the augmented matrix of some inhomogeneous system. Solve the system and express the solutions in vector form. 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 Sol: As there are no pivots in columns 1 & 3 , x1 , x3 are therefore free i.e. you can assign parameters to them. However, there are pivots in columns 2 , 4 , 5, x2 , x4 , x5 are therefore restricted i.e. they must be expressed in terms of the free variables or the constants. Let x1 s, x3 t; where s, t are any real numbers. From row three we have x5 2 . From row two we have x4 0 . From row one we have x2 1 2 x3 1 2t . x1 s 0 s 0 0 1 0 x 2 1 2 t 1 0 2t 1 0 2 x t 0 0 t 0 s 0 t 1 , where s, t are any real numbers. 3 x4 0 0 0 0 0 0 0 x 2 2 0 0 2 0 0 5 1 3. Page 6, Real-valued Functions of Several Variables Original Version: Limit, Continuity and Differentiability The concepts of limit, continuity and differentiability naturally generalize from the one variable situation. Two variables will be considered as the extension to three or more variables will be clear. Revised Version: Limit, Continuity and Partial Derivative The concepts of limit, continuity and derivative naturally generalize from the one variable situation. Two variables will be considered as the extension to three or more variables will be clear. 4. Page 7, Real-valued Functions of Several Variables (24/9/2001) Original Version: Examples (ii) Show that f ( x, y ) x2 has no limit at the origin. x2 y2 Proof: x2 As ( x, y ) (0,0) along the line y = 0, f ( x,0) 2 1 and the limiting value is 1. x As ( x, y ) x0 , y0 along the line x 0, f (0, y ) and the limiting value is 0. Revised Version: Examples (ii) x2 Show that f ( x, y ) 2 has no limit at the origin. x y2 Proof: x2 As ( x, y ) (0,0) along the line y = 0, f ( x,0) 2 1 and the limiting value is 1. x As ( x, y) 0,0 along the line x 0, f (0, y ) and the limiting value is 0. 5. Page 10, Real-valued Functions of Several Variables Original Version: Recall that for a function f(x) of one variable f x0 h f x0 , y 0 df x0 lim h 0 dx h Revised Version: Recall that for a function f(x) of one variable f ( x0 h ) f ( x0 ) df x0 lim h 0 dx h 2 6. Page 10, Real-valued Functions of Several Variables Original Version: made counterclockwisely from the positive direction of x-axis to the line x t cos , y t sin and t is any real number. Then if cos 0 lim f ( x, y ) lim f (t cos , t sin ) lim ( x , y ) ( 0 , 0 ) t 0 t 0 x t cos 2t 3 cos sin 2 t 2 cos 2 t 4 sin 4 y t sin 2t 3 cos sin 2 3 2 cos sin 2 t lim 2 lim 0 f (0,0) t 0 t cos 2 t 4 sin 4 t 0 cos 2 4 t sin t3 t Revised Version: made counterclockwisely from the positive direction of x-axis to the line x t cos , y t sin and t is any real number. Then if cos 0 lim f ( x, y ) lim f (t cos , t sin ) lim ( x , y )( 0 , 0 ) t 0 x t cos t 0 2t 3 cos sin 2 t 2 cos 2 t 4 sin 4 y t sin 2t 3 cos sin 2 2 2t cos sin 2 0 t lim 2 lim 0 f (0,0) t 0 t cos 2 t 4 sin 4 t 0 cos 2 t 2 sin 4 cos 2 t2 7. Page 13, Real-valued Functions of Several Variables (27/9/2001) Original Version: f (0, y ) f (0,0) 00 f y (0,0) lim lim 0 x 0 x 0 y y Revised Version: f (0, y ) f (0,0) 00 f y (0,0) lim lim 0 y 0 y 0 y y 8. Page 34,35, Real-valued Functions of Several Variables (11/10/2001) Original Version: Examples (i) f x, y x 2 2 y 2 f f 2x 4y x y f f 0 and 0 ( x, y ) (0,0) is the only stationary point. x y 3 f (0,0) 0 and clearly f ( x, y ) 0 hence this is a local minimum. f ( x, y) x 2 2 y 2 y x (ii) f x, y 2 x x 2 2 y 2 f f 2 2x 4 y x y f f 0 and y 0 x, y 1,0 x is the only stationary point. f x, y f 1,0 2 x x 2 2 y 2 1 x 1 2 y 2 2 0 x, y 1,0 Thus f ( x, y ) f (1,0) and (1,0) is a local maximum point. f ( x, y) 2 x x 2 2 y 2 y x (iii) 4 f x, y x 2 2 y 2 f f 2x 4y x y f f 0 and 0 x, y 0,0 x y is the only stationary point and f(0,0) = 0. However f(x,y) may be either positive or negative depending on the relative magnitudes of x and y . If y 0 f ( x,0) x 2 0 always If x 0 f (0, y) 2 y 2 0 always Thus (0,0) is a saddle point f ( x, y) x 2 2 y 2 y y f<0 f 0 f>0 x f 0 if x 2 y x f 0 if x 2 y f<0 Revised Version: Examples (i) f ( x, y ) x 2 2 y 2 , f x ( x , y ) 2 x , f y ( x , y ) 4 y f x ( x, y ) 2 x 0 & f y ( x, y ) 4 y 0 ( x, y ) (0,0) is the only stationary point. f xx x, y 2, f yy x, y 4, f xy ( x, y ) 0 and f xx 0,0 2 0 f xx 0,0 f yy 0,0 f xy2 (0,0) 8 0 . f (0,0) 0 is a local minimum and clearly f ( x, y ) 0 hence this is a global minimum. 5 f ( x, y) x 2 2 y 2 y x (ii) f ( x, y ) 2 x x 2 2 y 2 , f x ( x, y ) 2 2 x, f y ( x, y ) 4 y f x ( x, y ) 2 2 x 0 & f y ( x, y ) 4 y 0 ( x, y ) (1,0) is the only stationary point. f xx x, y 2, f yy x, y 4, f xy ( x, y ) 0 and f xx 1,0 2 0 f xx 1,0 f yy 1,0 f xy2 (1,0) 8 0 . f (1,0) 1 is a local maximum. In addition, f ( x, y ) f (1,0) 2 x x 2 2 y 2 1 x 1 2 y 2 0 Thus f ( x, y ) f (1,0) and (1,0) is a global maximum point. 2 f ( x, y) 2 x x 2 2 y 2 y x (iii) f ( x, y ) x 2 2 y 2 , f x ( x, y ) 2 x, f y ( x, y ) 4 y f x ( x, y ) 2 x 0 & f y ( x, y ) 4 y 0 ( x, y ) (0,0) is the only stationary point. f xx x, y 2, f yy x, y 4, f xy ( x, y ) 0 Since f xx 0,0 f yy 0,0 f xy2 (0,0) 8 , (0,0) is a saddle point. (0,0) being a saddle point can also be observed by noting that f ( x, y ) may be either positive or negative depending on the relative magnitudes of x and y . 6 If y 0 , x 0, f ( x,0) f (0,0) x 2 0 . If x 0, y 0 Thus (0,0) is a saddle point f (0, y ) f (0,0) 2 y 2 0 . f ( x, y) x 2 2 y 2 y y f<0 f 0 f>0 x f<0 9. Page 43, Real-valued Functions of Several Variables (12/10/2001) Original Version: Q s x x cos y sin y x P From Taylor’s Theorem f f x f c o s s s i y n f f x y x y f f f cos sin x x y And as s 0 df f f cos sin ds x y (*) Revised Version: Q s P f 0 if x 2 y x y x x s cos y s sin From Taylor’s Theorem 7 f 0 if x 2 y f f x y x y f f f cos sin s x y f f f x x f y y df f f cos sin (*) ds x y 10. Page 3, Vector Calculus (17/10/2001) Original Version: If at each point (x,y,z) there is an associated vector v( x, y, z) v1 ( x, y, z)i v2 ( x, y, z) j v2 ( x, y, z)k And as s 0 Revised Version: If at each point (x,y,z) there is an associated vector v( x, y, z ) v1 ( x, y, z )i v2 ( x, y, z ) j v3 ( x, y, z )k 11. Page 4, Vector Calculus Original Version: 5.4.1. Divergence of a Vector Field If v( x, y, z ) vi ( x, y, z )i v2 ( x, y, z ) j v3 ( x, y, z )k Revised Version: 5.4.1. Divergence of a Vector Field If v( x, y, z ) v1 ( x, y, z )i v2 ( x, y, z ) j v3 ( x, y, z )k 12. Page 6, Vector Calculus Original Version: Example The electric field at position r due to a point charge at the origin is Q r Q xi yj zk E 3 3 4 0 r 4 0 4 0 x 2 y 2 z 2 2 Q x similar terms divE E 3 4 0 x 2 2 2 2 x y z Q 1 3 2 x similar terms x 3 4 0 r 2 r 5 Q 3 3 x2 y2 z2 4 0 r 3 r5 divE 0 except at the origin. Revised Version: The electric field at position r due to a point charge at the origin is 8 E r Q 3 40 r 40 xi yj zk Q divE E x y 2 z 2 2 3 2 x similar te rms 3 40 x 2 2 2 x y z 2 Q Q 1 3 2x Q 3 3x 2 y 2 z 2 x similar te rms 0 40 r 3 2 r 5 40 r 3 r5 divE 0 except at the origin. 13. Page 7, Vector Calculus Original Version: We define curl v v i j k ( v1i v2 j v3k ) y z x i z v1 j y v2 k v v v v v v i 3 2 j 1 3 k 2 1 z z z x y y x v3 Revised Version: We define curl v v i j k ( v1i v2 j v3k ) y z x i x v1 j y v2 k v v i 3 2 z z y v3 14. Page 5, page 6, Vector Calculus (19/10/2001) v v v v j 1 3 k 2 1 x y z x Taking the midpoint of a face as a representative point, the flux through the face ABCD out of the box is x v1 ( x , y, z ) y z 2 ( v2 and v3 are parallel to ABCD and make no contribution) Similarly the flux through face A' B' C' D' into the box is v1 ( x x 2 , y, z ) y z and the net flux out of the box is 9 x x v1 x 2 , y, z v1 x 2 , y, z yz x v1 x, y, z v1 x, y, z x v1 x, y, z yz v1 x, y, z 2 x 2 x v 1 xyz x Similarly by considering the two other pairs of faces, we have that the total flux out of the box is v1 v 2 v3 x y z xyz If we consider the flux per unit volume and take the limit as the volume of the box shrinks to zero we obtain v v v divv 1 2 3 x y z Revised Version: Taking the midpoint of a face as a representative point, the flux through the face ABCD out of the box is x v1 ( x , y, z ) y z 2 ( v2 and v3 are parallel to ABCD and make no contribution) Similarly the flux through face A' B' C' D' into the box is v1 ( x x 2 , y, z ) y z and the net flux out of the box is x x v1 x 2 , y , z v1 x 2 , y , z yz 2 3 2 v x , y , z v x , y , z 3 v1 x, y , z 1 x 1 x 1 x 1 1 v1 x, y , z v x , y , z 1 2 3 1! 2 x 2! 2 x 3! 2 x 2 3 2 v x , y , z v x , y , z 3 v1 x, y , z 1 x 1 x 1 x 1 1 v1 x, y , z yz v x , y , z 1 2 3 1 ! 2 x 2 ! 2 x 3 ! 2 x 2 x v1 x, y , z 2 x 3 3 v1 x, y , z yz x 3! 2 x 3 1! 2 v x, y , z 2 x 2 3 v1 x, y , z 1 xyz 3 3 x 3! 2 x Similarly by considering the two other pairs of faces, we have that the total flux out of the box is 10 v1 x, y , z v 2 x, y , z v 3 x, y , z xyz x y z 2 x 2 3 v1 x, y , z 2 y 2 3 v 2 x, y , z 2 z 2 3 v 3 x, y , z xyz 3 3! 2 3 3! 2 3 x 3 y 3 z 3 3! 2 If we consider the flux per unit volume , we have 2 2 2 v1 x, y, z v 2 x, y , z v3 x, y , z 2 x 3 v1 x, y , z 2 y 3 v 2 x, y , z 2 z 3 v3 x, y , z 3! 2 3 x y z x 3 3! 2 3 y 3 3! 2 3 z 3 15. Page 2, Multiple Integrals Original Version: (1) (2) y y d d Sy Sy c c x a Sx x a b Sx b Revised Version: (1) y (2) y d d y y c c x a x b a x x b x 16. Page 2, Page3 Multiple Integrals Original Version: Example Evaluate (2 xy y 2 )dxdy where S is the rectangle 1 x 2, 0 y 1 . S Sol: 11 2 xy y ds dy x y xy dy 4 y 2 y y y dy 1 2 y 0 x 1 2 1 y 0 1 2 2 2 1 2 2 y 0 1 y2 y3 3 3 0 2 11 6 or 1 3 1 2 xy y 2 dy dy dx 2 xy 2 y dx x1 y 0 x1 3 0 2 1 x dx x 1 3 2 2 x2 1 x 2 3 1 4 2 1 1 2 3 2 3 11 6 Revised Version: Example Evaluate (2 xy y 2 )dxdy where S is the rectangle 1 x 2, 0 y 1 . S Sol: 1 2 1 1 2 2 2 2 2 2 0 1 2 xy y dxdy 0 x y xy 1dy 0 4 y 2 y y y dy 3 y 2 y 3 1 11 3 0 6 2 or 2 1 2 2 2 y3 1 x 2 x 2 4 2 1 1 11 1 2 2 xy y dy dx xy dx x dx 0 1 0 3 3 2 31 2 3 2 3 6 1 1 17. Page 3, Multiple Integrals Original Version: Example (Non-rectangular regions) 12 y y h(x) y h(x) d S h( y ) c g (x ) a S g ( y) S g (x ) x x b a b a x b, g ( x) y h( x) c y d , g ( y ) x h( y ) a x b, g ( x) y h( x) b h( x) xa y g ( x) f ( x, y )dy dx d h( y ) x c yg ( y) f ( x, y )dx dy b h( x) xa y g ( x) x f ( x, y )dy dx Variable Limits unless a rectangular region Constant Limits Revised Version: Example (Non-rectangular regions) y h(x) y y h(x) d S h( y ) c g (x) a g (x) x x b a x b, g ( x ) y h ( x ) c y d , g ( y ) x h( y ) b h( x) xa y g ( x) S g ( y) S f ( x, y ) dy dx g ( y ) f ( x, y )dx dy y c x h ( y ) d a b a x b, g ( x ) y h ( x ) b h( x) xa y g ( x) f ( x, y )dy dx Variable Limits unless a rectangular region Constant Limits 18. Page 1, Multiple Integrals (22/10/2001) Original Version: For a function f (x ) of one variable, we define the definite integral of f from a to b as N f x dx lim f xi xi N i 1 Revised Version: For a function f (x ) of one variable, we define the definite integral of f from a to b as 13 x b f ( x )dx lim N a N f ( x )x i i i 1 19. Page 18, Multiple Integrals (24/10/2001) Original Version: x x x u v w x, y, z y y y J u , v, w u v w x x x u v w Revised Version: x u ( x, y, z ) y J (u, v, w) u z u x v y v z v x w y w z w 20. Page 17, Real-valued Functions of Several Variables (24/10/2001) Original Version: 2 2 f d 2x 2 f 2 f dy dx dx d z ( 1 , 1 ) ( 1 , 1 ) (1,1) t 1 t 1 t 1 2 t 1 2 2 t 1 x dt x yx dt dt dt dt f d2y 2 f dx dy 2 f dy (1,1) 2 t 1 (1,1) (1,1) t 1 t 1 t 1 2 y dt xy dt dt y dt e 2 e 4 2e 1 2 e 0 2e 2 1 e 0 14e Revised Version 2 2 f d 2x 2 f 2 f dy dx dx d z ( 1 , 1 ) ( 1 , 1 ) (1,1) t 1 t 1 2 t 1 2 2 t 1 x dt x yx dt dt dt dt 2 f d2y 2 f dx dy 2 f dy (1,1) 2 t 1 (1,1) (1,1) t 1 t 1 2 y dt xy dt dt y dt e 2 e 4 2e 1 2 e 0 2e 2 1 e 1 15e 21. Page 4, Multiple Integrals (24/10/2001) Original Version: y 1 y 2x y x2 S 0 1 y0 2 x 14 2 t 1 t 1 Revised Version: y 1 y x2 y -x+2 S 0 1 y0 2 x 22. Page 12, Vector Integration (8/11/2001) Original Version: Example Evaluate F dS where F x 2 i xyj z 2 k and S is the surface of the cube bounded by x = 0, x = 2, S y = 0, y = 2, z = 0 and z = 2. Sol: We integrate over each face in turn and sum the results. For the face ABCD: dS dydz , the outward normal n i , x 2 . F d S ABCD 2 z 2 G F idS F C D ABCD 2 x 0 y 0 x 2 dydz 2 2 x 0 y 0 4dydz 16 2 O 2 x For the face BEFC: dS dxdz , the outward normal n j , y 2 . A y y E B y F d S F idS BEFC 2 BEFC 2 x 2 dxdz x 0 z 0 2 2 2 xdxdz 8 x 0 y 0 F d S 16, F d S F d S F d S 0 Similarly, CFGD Hence OEFG OADG OABE F d S 40 S Revised Version: Example Evaluate F dS S where F x 2 i xyj z 2 k and S is the surface of the cube bounded by x = 0, x = 2, y = 0, y = 2, z = 0 and z = 2. Sol: We integrate over each face in turn and sum the results. For the face ABCD: dS dydz , the outward normal n i , x 2 . z 2 G F C D 2 O 15 2 x y A E B y y F d S F idS ABCD 2 ABCD 2 z 0 y 0 x dydz 2 2 2 z 0 y 0 4dydz 16 For the face BEFC: dS dxdz , the outward normal n j , y 2 . F d S F jdS BEFC 2 BEFC 2 x 0 z 0 xydxdz 2 2 2 xdxdz 8 x 0 z 0 F d S 16, F d S F d S F d S 0 Similarly, CFGD OEFG OADG OABE Hence F d S 40 23. A remark (in red) on surface integral has been added in page 18, 19. See below: S Now we are going to make a few concluding remarks on the ways of computing the surface integral of second kind, that is, compute F ( x, y, z ) d S , where F ( x, y, z ) is a vector field defined on S. S Suppose the surface is given implicitly by ( x, y, z ) 0 and we are going to project S onto xy-plane with the projection, the region xy . Assume we have chosen the normal n to S at the point (x, y, z) by considering the cosine of the included angle between the normal and the positive direction of z-axis. Then S F d S S F ndS S F dS F Z dxdy xy F xy 1 z dxdy Whether the positive sign or the negative sign is chosen is depending on the problem raised. In addition, if the surface is given explicitly by z ( x, y ) 0 and still we are going to project S onto xyplane with the projection, the region xy , then F d S F ndS F S S X i Y j k X Y 1 2 S 2 dS X i Y j k X Y 1 F dxdy F X i Y j k dxdy 1 2 2 1 xy xy 2 X 2 Y 16
© Copyright 2026 Paperzz