Exact Solution of the Six-Vertex Model with Domain Wall Boundary Conditions: Antiferroelectric Phase PAVEL BLEHER Indiana University–Purdue University Indianapolis KARL LIECHTY Indiana University–Purdue University Indianapolis Abstract We obtain the large-n asymptotics of the partition function Zn of the six-vertex model with domain wall boundary conditions in the antiferroelectric phase region, with the weights a D sinh. t/, b D sinh. C t/, c D sinh.2 /, jtj < . We prove the conjecture of Zinn-Justin, that as n ! 1, Zn D 2 C #4 .n!/F n Œ1 C O.n1 /, where ! and F are given by explicit expressions in and t, and #4 .´/ is the Jacobi theta function. The proof is based on the Riemann-Hilbert approach to the large-n asymptotic expansion of the underlying discrete orthogonal polynomials and on the Deift-Zhou nonlinear steepestdescent method. © 2009 Wiley Periodicals, Inc. 1 Introduction and Formulation of the Main Result 1.1 Definition of the Model The six-vertex model, or the model of two-dimensional ice, is stated on a square n n lattice with arrows on the edges. The arrows obey the rule that at every vertex there are two arrows pointing in and two arrows pointing out. Such a rule is sometimes called the ice rule. There are only six possible configurations of arrows at each vertex, hence the name of the model; see Figure 1.1. We will consider the domain wall boundary conditions (DWBC), in which the arrows on the upper and lower boundaries point into the square, and the ones on the left and right boundaries point out. One possible configuration with DWBC on the 4 4 lattice is shown on Figure 1.2. For each possible vertex state we assign a weight wi ; i D 1; : : : ; 6, and define, as usual, the partition function as a sum over all possible arrow configurations of the product of the vertex weights, (1.1) Zn D X arrow configurations w. /; w. / D Y x2Vn w t .xI/ D 6 Y iD1 Communications on Pure and Applied Mathematics, Vol. LXIII, 0779–0829 (2010) © 2009 Wiley Periodicals, Inc. Ni ./ wi ; 780 P. M. BLEHER AND K. LIECHTY (1) (2) (3) (4) (5) (6) F IGURE 1.1. The six arrow configurations allowed at a vertex. F IGURE 1.2. An example of a 4 4 configuration with domain wall boundary conditions (DWBC). where Vn is the n n set of vertices, t.xI / 2 f1; : : : ; 6g is the vertex type of configuration at vertex x according to Figure 1.1, and Ni . / is the number of vertices of type i in the configuration . The sum is taken over all possible configurations obeying the given boundary condition. The Gibbs measure is defined then as w. / : (1.2) n . / D Zn Our main goal is to obtain the large-n asymptotics of the partition function Zn . The six-vertex model has six parameters: the weights wi . By using some conservation laws it can be reduced to only two parameters (see, e.g., [1, 8, 14]). Namely, we have that (1.3) Zn .w1 ; w2 ; w3 ; w4 ; w5 ; w6 / D C.n/Zn .a; a; b; b; c; c/ and (1.4) n . I w1 ; w2 ; w3 ; w4 ; w5 ; w6 / D n . I a; a; b; b; c; c/; EXACT SOLUTION OF THE SIX-VERTEX MODEL where aD (1.5) p w1 w2 ; bD and p w3 w4 ; C.n/ D (1.6) w5 w6 : (1.8) n2 Zn .a; a; b; b; c; c/ D c Zn and n . I a; a; b; b; c; c/ D n p w5 w6 ; n=2 Furthermore, (1.7) cD 781 a a b b ; ; ; ; 1; 1 c c c c a a b b I ; ; ; ; 1; 1 ; c c c c so that a general weight reduces to the two parameters a c and bc . 1.2 Exact Solution of the Six-Vertex Model for a Finite n Introduce the parameter a2 C b 2 c 2 : 2ab The phase diagram of the six-vertex model consists of three phase regions: the ferroelectric phase region, > 1; the antiferroelectric phase region, < 1; and the disordered phase region, 1 < < 1. Observe that ja bj > c in the ferroelectric phase region and c > a Cb in the antiferroelectric phase region, while in the disordered phase region a; b; c satisfy the triangle inequalities. In the three phase regions we parametrize the weights in the standard way: for the ferroelectric phase, D (1.9) (1.10) a D sinh.t /; b D sinh.t C /; c D sinh.2j j/; 0 < j j < tI for the antiferroelectric phase, (1.11) a D sinh. t/; b D sinh. C t/; c D sinh.2 /; jtj < I and for the disordered phase (1.12) a D sin. t/; b D sin. C t/; c D sin.2 /; jtj < : The phase diagram of the six-vertex model is shown in Figure 1.3. The phase diagram and the Bethe ansatz solution of the six-vertex model for periodic and antiperiodic boundary conditions are thoroughly discussed in the works of Lieb [21, 22, 23, 24], Lieb and Wu [25], Sutherland [28], Baxter [4], and Batchelor, Baxter, O’Rourke, and Yung [3]. See also the work of Wu and Lin [30], in which the Pfaffian solution for the six-vertex model with periodic boundary conditions is obtained on the free fermion line, D 0. Brascamp, Kunz, and Wu [10] prove the equality of the free energy with periodic and free boundary conditions under 782 P. M. BLEHER AND K. LIECHTY bc F D 1 A(1) A(2) AF A(3) F 0 1 ac F IGURE 1.3. The phase diagram of the model, where F, AF, and D mark ferroelectric, antiferroelectric, and disordered phases, respectively. The circular arc corresponds to the so-called free fermion line, when D 0, and the three dots correspond to 1-, 2-, and 3-enumeration of alternating sign matrices. various conditions on a; b; c, and they also prove the existence of the spontaneous staggered polarization for sufficiently small values of the parameters ac and bc . In this paper we will discuss the antiferroelectric phase region, and we will use parametrization (1.11). The parameter in the antiferroelectric phase region reduces to D cosh.2 /: (1.13) The six-vertex model with DWBC was introduced by Korepin [17], who derived important recursion relations for the partition function of the model. These recursion relations were solved by Izergin [15], and this led to a beautiful determinantal formula for the partition function with DWBC. A detailed proof of this formula, usually called the Izergin-Korepin formula, and its generalizations are given in the paper of Izergin, Coker, and Korepin [16]. When the weights are parametrized according to (1.11), the Izergin-Korepin formula is 2 (1.14) Zn D Œsinh. t/ sinh. C t/n n ; Qn1 2 j Š j D0 where n is the Hankel determinant, j Ck2 d (1.15) n D det ; j Ck2 dt 1j;kn and (1.16) .t/ D sinh.2 / : sinh. t/ sinh. C t/ EXACT SOLUTION OF THE SIX-VERTEX MODEL 783 An elegant derivation of the Izergin-Korepin formula from the Yang-Baxter equations is given in the papers of Korepin and Zinn-Justin [18] and Kuperberg [20] (see also the book of Bressoud [11]). One of the applications of the determinantal formula is that it implies that the function n solves the Toda equation @ I @t compare the work of Sogo [27]. The Toda equation was used by Korepin and ZinnJustin [18] to derive the free energy of the six-vertex model with DWBC, assuming some ansatz on the behavior of subdominant terms in the large-n asymptotics of the free energy. Another application of the Izergin-Korepin formula is that n can be expressed in terms of a partition function of a random matrix model; see the paper [31] of Zinn-Justin. Namely, let us write .t/ in the form of the Laplace transform of a discrete measure, 1 X sinh.2 / D2 e 2t l2 jlj: (1.18) .t/ D sinh. t/ sinh. C t/ (1.17) n n00 n0 D nC1 n1 ; n 1; .0 / D 2 lD1 Then 1 X 2 (1.19) 2n n D nŠ l1 ;:::;ln D1 where (1.20) .l/ 2 .l/ D n Y e 2t li 2 jli j ; iD1 Y .lj li / 1i<j n is the Vandermonde determinant. For a proof see [31] or appendix A in [6]. We omit the proof of this and some other formulae in the paper, due to a publishing limitation on the length of the paper. For the proofs, see [6]. Introduce now discrete monic polynomials Pj .x/ D x j C orthogonal on the set Z with respect to the weight, w.l/ D e 2t l2 jlj; (1.21) so that (1.22) 1 X Pj .l/Pk .l/w.l/ D hk ıjk : lD1 Then it follows from (1.19) that (1.23) 2 n D 2n n1 Y kD0 see appendix B of [6]. hk I 784 P. M. BLEHER AND K. LIECHTY 1.3 Rescaling of the Weight Set 2 (1.24) n D ; x D ln ; n wn .x/ D e n.jxj x/ ; and Pnk .x/ D (1.25) Consider also the lattice (1.26) kn Pk D t ; x : n 2k ; k2Z : Ln D x D n Then from (1.22) we obtain that the monic polynomials Pnk .x/ satisfy the orthogonality condition, X Pnj .x/Pnk .x/wn .x/n D hnk ıjk ; hnk D hk 2kC1 : (1.27) n x2Ln We can then combine equations (1.14), (1.23), and (1.27) to obtain 2 n1 nab n Y hnk ; a D sinh. t/; b D sinh. C t/: (1.28) Zn D .kŠ/2 kD0 For what follows we will need to extend the weight wn .x/ to the complex plane. We do so by defining wn .´/ on the complex plane as wn .´/ D e nV .´/ (1.29) where (1.30) ( V .´/ D ´ ´ when Re ´ 0; ´ ´ when Re ´ 0; so that V .´/, and thus wn .´/, is two-valued on the imaginary axis. 1.4 Main Result: Asymptotics of the Partition Function This work is a continuation of the work [5] of the first author with Vladimir Fokin and [7, 8] by the authors of the present work. In [5] the authors obtain the large-n asymptotics of the partition function Zn in the disordered phase. They prove the conjecture of Paul Zinn-Justin [31] that the large-n asymptotics of Zn in the disordered phase has the following form: For some " > 0, (1.31) 2 Zn D C n F n Œ1 C O.n" /: Furthermore, they find the exact value of the exponent , (1.32) D 2 2 1 : 12 3 . 2 / EXACT SOLUTION OF THE SIX-VERTEX MODEL 785 The value of F in the disordered phase is given by the formula F D (1.33) ab t ; 2 cos 2 a D sin. t/; b D sin. C t/; in parametrization (1.12). In the work [8] we obtain the following large-n asymptotic formula for Zn in the ferroelectric phase region: For any " > 0, 2 1" Zn D C G n F n Œ1 C O.e n (1.34) /; where C D 1 e 4 , G D e t , and F D sinh.t C / in parametrization (1.10). Finally, in the work [7] we obtain the following large-n asymptotic formula for Zn on the borderline between the ferroelectric and disordered phase regions: (1.35) Zn .a; a; a C 1; a C 1; 1; 1/ D C n G p n 2 F n Œ1 C O.n1=2 /; where C > 0, (1.36) 1 D ; 4 r 3 a G D exp ; 2 F D a C 1; and is the Riemann zeta function. In the present paper we obtain the large-n asymptotic formula for Zn in the antiferroelectric phase region. The formulation of the main result of the present paper and the proofs involve the Jacobi theta functions. Let us review their definition and basic properties. There are four Jacobi theta functions: #1 .´/ D 2 #2 .´/ D 2 (1.37) 1 X 1 2 .1/n q .nC 2 / sin..2n C 1/´/; nD0 1 X 1 2 q .nC 2 / cos..2n C 1/´/; nD0 #3 .´/ D 1 C 2 #4 .´/ D 1 C 2 1 X nD1 1 X 2 q n cos.2n´/; 2 .1/n q n cos.2n´/; nD1 where q is the elliptic nome. We will assume that 1 > q > 0. Figure 1.4 shows the graphs of #1 and #2 (left figure) and #3 and #4 (right figure) on the interval Œ0; for q D 0:5. Observe that #1 and #4 are increasing on Œ0; 2 while #2 and #3 are decreasing on this interval. 786 P. M. BLEHER AND K. LIECHTY F IGURE 1.4. The graphs of #1 and #2 (left figure) and #3 and #4 (right figure) on the interval Œ0; for q D 0:5. The Jacobi theta functions satisfy the following periodicity conditions: #1 .´ C / D #1 .´/; #1 .´ C / D e 2i´ q 1 #1 .´/; (1.38) #2 .´ C / D #2 .´/; #2 .´ C / D e 2i´ q 1 #2 .´/; #3 .´ C / D #3 .´/; #3 .´ C / D e 2i´ q 1 #3 .´/; #4 .´ C / D #4 .´/; #4 .´ C / D e 2i´ q 1 #4 .´/; where is a pure imaginary number related to q by the equation (1.39) q D e i : The theta functions also satisfy the symmetry conditions (1.40) and the equations #1 .´/ D #1 .´/; #2 .´/ D #2 .´/; #3 .´/ D #3 .´/; #4 .´/ D #4 .´/; #1 .´/ D #2 ´ ; 2 #3 .´/ D #4 ´ C ; 2 (1.41) i : #1 .´/ D ie i´C 4 #4 ´ C 2 The only zeroes of the theta functions are D 0; #3 C D 0; #4 D 0; (1.42) #1 .0/ D 0; #2 2 2 2 2 and their shifts by m C n , m; n 2 Z. In the antiferroelectric phase region we use parametrization (1.11), with two parameters t and such that jtj < . In what follows we will also use the following EXACT SOLUTION OF THE SIX-VERTEX MODEL 787 parameters: t .1 C / 2 .1; 1/; ! D 2 .0; /: 2 The elliptic nome for all Jacobi theta functions in this paper will be equal to (1.43) D q D e (1.44) 2 =2 : Our main result in the present paper is the following asymptotic formula for Zn : T HEOREM 1.1 As n ! 1, 2 Zn D C #4 .n!/F n .1 C O.n1 //; (1.45) where C > 0 is a constant, and sinh. t/ sinh. C t/#10 .0/ : (1.46) F D 2 #1 .!/ The asymptotic formula (1.45) proves the conjecture of Zinn-Justin in [31]. The proof of Theorem 1.1 will be based on the Riemann-Hilbert approach to discrete orthogonal polynomials. An important first step in this approach is constructing the equilibrium measure. 2 Equilibrium Measure 2.1 Heuristic Motivation and Definition of the Equilibrium Measure If we scale the variables in (1.19) as i D 2li =n, then we can rewrite formula (1.19) as X 2 n D (2.1) 2n nŠ 2 H . / n e n ; n 2 2 n Z where d .x/ D (2.2) n 1X ı.x j /; n j D1 and (2.3) “ H./ D log 1 d.x/d.y/ C jx yj Z .jxj x/d.x/; x6Dy where all integrals are over R. Due to the factor .n2 / in the exponent of (2.1), we expect the sum, in the largen limit, to be focused in a neighborhood of a global minimum of the functional H . Clearly, we have that is a probability measure and (2.4) .a; b/ ba 2 for any 1 < a < b < 1; 788 P. M. BLEHER AND K. LIECHTY because in (2.2), j 2 mind, we define 2 n Z and j 6D k if j 6D k. With these constraints in E0 D inf H./ (2.5) where the infimum is taken over all probability measures satisfying (2.4). It is possible to prove that there exists a unique minimizer 0 so that E0 D H.0 /I (2.6) see, e.g., the works of Saff and Totik [26], Dragnev and Saff [13], and Kuijlaars [19]. Furthermore, 0 has support on a finite number of intervals and is absolutely continuous with respect to the Lebesgue measure. The minimizer 0 is called the equilibrium measure. Denote the density function of the equilibrium measure as .x/ and its resolvent as !, so we have Z d0 .x/dx (2.7) D .x/; !.´/ D ; dx ´x R and 1 .!.x i0/ !.x C i0//: 2 i The structure of the equilibrium measure 0 is studied in the paper of Zinn-Justin [31], who shows that 0 has support on an interval Œ˛; ˇ, with a saturated region Œ˛ 0 ; ˇ 0 in which 1 ; x 2 Œ˛ 0 ; ˇ 0 ; (2.9) .x/ D 2 and two unsaturated regions, Œ˛; ˛ 0 and Œˇ 0 ; ˇ, in which 1 ; x 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/I (2.10) 0 < .x/ < 2 see Figure 2.1. We also have that .x/ D (2.8) ˛ < ˛ 0 < 0 < ˇ 0 < ˇ; (2.11) so that the origin, which is a singular point of the potential V .x/ D jxj x, lies inside the saturated region Œ˛ 0 ; ˇ 0 . The measure 0 is uniquely determined by the Euler-Lagrange variational conditions Z (2.12) 2 D l log jx yjd0 .y/ .jxj x/ l l for x 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ; for x 2 Œ˛ 0 ; ˇ 0 ; for x … Œ˛; ˇ; where l is the Lagrange multiplier. The Euler-Lagrange variational conditions imply (2.13) !.x i0/ C !.x C i0/ D C sgn.x/ for x 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ; EXACT SOLUTION OF THE SIX-VERTEX MODEL 789 ρ(x) α α’ β’ 0 β F IGURE 2.1. The equilibrium density function .x/. whereas in the saturated region, we have (2.14) .x/ D 1 1 .!.x i0/ !.x C i0// D 2 i 2 for x 2 Œ˛ 0 ; ˇ 0 : Now we will give a detailed description of the equilibrium measure. We begin with explicit formulae for the endpoints of the support of the equilibrium measure. 2.2 Explicit Formulae for the Endpoints P ROPOSITION 2.1 The endpoints of the support of the equilibrium measure 0 are equal to ˛ D (2.15) ˇ 0 D #10 . !2 / ; #1 . !2 / #30 . !2 / ; #3 . !2 / ˛ 0 D ˇ D #40 . !2 / ; #4 . !2 / #20 . !2 / : #2 . !2 / The differences between the endpoints are equal to ˛ 0 ˛ D #42 .0/ (2.16) #2 . !2 /#3 . !2 / ; #1 . !2 /#4 . !2 / ˇ 0 ˛ 0 D #22 .0/ ˇ ˇ 0 D #4 .0/2 #1 . !2 /#2 . !2 / ; #3 . !2 /#4 . !2 / #1 . !2 /#4 . !2 / : #2 . !2 /#3 . !2 / and ˇ ˛ D #22 .0/ (2.17) #3 . !2 /#4 . !2 / ; #1 . !2 /#2 . !2 / ˇ 0 ˛ D #32 .0/ ˇ ˛ 0 D #3 .0/2 #2 . !2 /#4 . !2 / : #1 . !2 /#3 . !2 / For a proof of Proposition 2.1, see the next section. #1 . !2 /#3 . !2 / ; #2 . !2 /#4 . !2 / 790 P. M. BLEHER AND K. LIECHTY 2.3 Equilibrium Density Function P ROPOSITION 2.2 The equilibrium density function .x/ is given by the formulae Z 1 x dx 0 ; ˛ x ˛0; p ˛ .x 0 ˛/.˛ 0 x 0 /.ˇ 0 x 0 /.ˇ x 0 / 1 ; ˛0 x ˇ0; (2.18) .x/ D 2Z dx 0 1 ˇ ; ˇ 0 x ˇ: p x .x 0 ˛/.x 0 ˛ 0 /.x 0 ˇ 0 /.ˇ x 0 / Also, Z ˇ (2.19) .x/dx D 0 1C : 2 The resolvent !.´/ of the equilibrium measure is given as Z 1 d´0 (2.20) !.´/ D ; p .´0 ˛/.´0 ˛ 0 /.´0 ˇ 0 /.´0 ˇ/ ´ where integration takes place on the sheet of p p R.´0 / .´0 ˛/.´0 ˛ 0 /.´0 ˇ 0 /.´0 ˇ/ p for which R.´0 / > 0 for ´0 > ˇ, with cuts on Œ˛; ˛ 0 and Œˇ 0 ; ˇ. For a proof of this proposition, see the next section. 2.4 g-function Define the g-function on C n Œ1; ˇ as Z ˇ (2.21) g.´/ D log.´ x/d0 .x/ ˛ where we take the principal branch for logarithm. Properties of g.´/. (1) g.´/ is analytic in C n .1; ˇ. (2) For large ´, (2.22) g.´/ D log ´ 1 X gj ; ´j Z gj D j D1 ˇ ˛ xj d0 .x/: j (3) g 0 .´/ D !.´/. (4) From the first relation in (2.12) we have that (2.23) gC .x/ C g .x/ D jxj x C l for x 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ; EXACT SOLUTION OF THE SIX-VERTEX MODEL 791 where gC and g refer to the limiting values of g from the upper and lower halfplanes, respectively. By differentiating this equation we obtain that 0 0 (2.24) !C .x/ C ! .x/ D gC .x/ C g .x/ D sgn x for x 2 Œ˛; ˛ 0 [ Œˇ 0; ˇ: Consider the function f .x/ D gC .x/ C g .x/ .jxj x C l/: (2.25) We have from (2.23) and (2.24) that f .x/ D f 0 .x/ D 0 for x D ˛; ˛ 0 ; ˇ 0 ; ˇ; (2.26) and from (2.20) that 1 (2.27) f 00 .x/ D p .x ˛/.x ˛ 0 /.x ˇ 0 /.x ˇ/ for x 2 .1; ˛/ [ .˛ 0 ; ˇ 0 / [ .ˇ; 1/: Since f 00 .x/ < 0 for x 2 .1; ˛/ [ .ˇ; 1/ (2.28) and f 00 .x/ > 0 for x 2 .˛ 0 ; ˇ 0 /; x 6D 0; (2.29) D jxj x C l we obtain that (2.30) gC .x/ C g .x/ > jxj x C l < jxj x C l for x 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ; for x 2 .˛ 0 ; ˇ 0 /; for x 2 R n Œ˛; ˇ: (5) Equation (2.21) implies that the function ‚ (2.31) G.x/ gC .x/ g .x/ is pure imaginary for all real x, and (2.32) G.x/ D for 1 < x ˛; 2 i Rx 2 i 2 i ˛ .s/ ds x 2 i 1C 2 2 Rˇ 2 i x .s/ ds for ˛ x ˛ 0 ; 0 for ˇ x < 1: for ˛ 0 x ˇ 0 ; for ˇ 0 x ˇ; From (2.30) and (2.32) we obtain that ( Rx jxj x C l ˙ Œ2 i 2 i ˛ .s/ ds Rˇ (2.33) 2g˙ .x/ D jxj x C l ˙ 2 i x .s/ ds for ˛ x ˛ 0 ; for ˇ 0 x ˇ; 792 P. M. BLEHER AND K. LIECHTY (6) Also, from (2.32) ˇ dG.x C iy/ ˇˇ (2.34) D 2 .x/ > 0; ˇ dy yD0 x 2 .˛; ˇ/: Observe that from (2.23) we have that (2.35) G.x/ D 2gC .x/V .x/l D Œ2g .x/V .x/l; x 2 Œ˛; ˛ 0 [Œˇ 0 ; ˇ; where V .x/ jxj x. 2.5 Evaluation of the Lagrange Multiplier l P ROPOSITION 2.3 The Lagrange multiplier l solves the equation #10 .0/ : (2.36) e l=2 D 2e#1 .!/ For a proof of this proposition, see the next section. 3 Proofs of Propositions 2.1, 2.2, and 2.3 P ROOF OF P ROPOSITION 2.1: Following Zinn-Justin [31], we make the following elliptic change of variables: Z ´ 1p 0 d´0 (3.1) u.´/ D ; .ˇ ˛/.ˇ ˛ 0 / p 2 .´0 ˛/.´0 ˛ 0 /.´0 ˇ 0 /.´0 ˇ/ ˇ p where integration takes place on the sheet on R.´0 / specified in Proposition 2.2. To understand this integral in terms of the usual elliptic integrals, we first make the change of variables .ˇ ´0 /.ˇ 0 ˛/ ; (3.2) v.´0 / D 0 .ˇ ´0 /.ˇ ˛/ so that ˇ 0 .ˇ ˛/v ˇ.ˇ 0 ˛/ : (3.3) ´0 D .ˇ ˛/v .ˇ 0 ˛/ Note that v.ˇ/ D 0, v.ˇ 0 / D 1, and v.˛/ D 1. When we substitute v into equation (3.1), we have Z v.´/ 1 dv (3.4) u.´/ D ; p 2k 0 v.v 1/.v 1=k 2 / where s .ˇ ˛/.ˇ 0 ˛ 0 / : (3.5) kD .ˇ 0 ˛/.ˇ ˛ 0 / p We next take v 0 D v, obtaining Z pv.´/ dv 0 ; p (3.6) u.´/ D .1 v 02 /.1 k 2 v 02 / 0 EXACT SOLUTION OF THE SIX-VERTEX MODEL u(β’ )iK ’ u(α’ )KiK a u ’ u(α )K u(β)0 u(β’ )iK 793 u(α’ )KiK ’ ’ F IGURE 3.1. The u-plane. Here u D u1 u.1/ and a D u C iK 0 . which corresponds to (3.7) p v.´/ D sn.u; k/, so that .ˇ ´/.ˇ 0 ˛/ D sn2 .u/; .ˇ 0 ´/.ˇ ˛/ sn.u/ D sn.u; k/: Notice that u maps the upper ´-plane conformally and bijectively onto the rectangle Œ0; K Œ0; iK 0 , and the lower ´-plane conformally and bijectively onto the rectangle Œ0; K ŒiK 0 ; 0, where Z 1 dv 0 ; p K D u.˛/ D .1 v 02 /.1 k 2 v 02 / 0 (3.8) Z 1=k dv 0 p K 0 D iu.ˇ 0 / D .v 02 1/.1 k 2 v 02 / 1 are the usual complete integrals of the first kind. More specifically (see Figure 3.1), (1) The upper (respectively, lower) cusp of the interval Œˇ; ˇ 0 is mapped onto the interval Œ0; iK 0 (respectively, Œ0; iK 0 ). (2) The upper (respectively, lower) cusp of the interval Œ˛; ˛ 0 is mapped onto the interval ŒK; K C iK 0 (respectively, ŒK; K iK 0 ). (3) The interval Œˇ 0 ; ˛ 0 is mapped onto the interval ŒiK 0 ; K C iK 0 or the interval ŒiK 0 ; K iK 0 , depending on the path of integration. (4) The remaining part of the real axis, Œ1; ˛ [ Œˇ; 1, is mapped onto the interval Œ0; K, with u.1/ D u D u1 . We will denote the rectangle Œ0; K ŒiK 0 ; iK 0 as R, the fundamental domain of the function ´.u/. We can now define (3.9) !.u/ Q D !.´.u// for u 2 R: 794 P. M. BLEHER AND K. LIECHTY The Euler-Lagrange equation (2.13) and the equation (2.14) then become !.u/ Q C !.u/ Q D 1 (3.10) !.u/ Q C !.u Q C 2K/ D 1 i !.u Q C 2iK 0 / !.u/ Q D for u 2 ŒiK 0 ; iK 0 ; for u 2 ŒK iK 0 ; K C iK 0 ; for u 2 ŒiK 0 ; K iK 0 : The function !.´/ is analytic in C nŒ˛; ˇ but can be analytically continued from either above or below through any of the cuts Œ˛; ˛ 0 , Œ˛ 0 ; ˇ 0 , and Œˇ 0 ; ˇ. These analytic continuations in the ´-plane give an analytic continuation of !Q in the uplane into a neighborhood of R, which can then be continued by equations (3.10) to the entire u-plane. We therefore have that !Q is analytic and satisfies equations (3.10) throughout the u-plane. The first two equations of (3.10) can be combined as !.u Q C 2K/ D !.u/ Q 2: (3.11) It therefore follows that !Q is a linear function of u, as its derivative is a doubly periodic entire function. We also know from the fact that !.´/ 1´ at infinity that (3.12) 2 .u u1 / C O.u u1 /2 !.u/ Q D p .ˇ 0 ˛/.ˇ ˛ 0 / in some neighborhood of u1 , where u1 is the image of infinity under the map u.´/. It thus follows from (3.10), (3.11), and (3.12) that !.u/ Q D (3.13) 1 .u u1 / K and that K0 D ; K 2 (3.14) p (3.15) .ˇ 0 ˛/.ˇ ˛ 0 / D 2K; 1 u1 D : K 2 (3.16) From (3.7) we obtain that ˇ0 ˛ D sn2 .u1 /: ˇ˛ (3.17) This implies that cn2 .u1 / D 1 sn2 .u1 / D 1 (3.18) ˇ0 ˛ ˇ ˇ0 D ; ˇ˛ ˇ˛ dn2 .u1 / D 1 k 2 sn2 .u1 / D1 .ˇ ˛/.ˇ 0 ˛ 0 / .ˇ 0 ˛/ ˇ ˇ0 D : .ˇ 0 ˛/.ˇ ˛ 0 / .ˇ ˛/ ˇ ˛0 EXACT SOLUTION OF THE SIX-VERTEX MODEL 795 From equations (3.15), (3.17), and (3.18) we obtain the distances between the turning points in terms of u1 : ˇ ˛ D 2K (3.19) dn.u1 / ; sn.u1 / cn.u1 / ˇ ˇ 0 D 2K ˇ ˛ 0 D 2K cn.u1 / ; sn.u1 / dn.u1 / cn.u1 / dn.u1 / : sn.u1 / The functions sn, cn, and dn are expressed in terms of Jacobi theta functions as follows (see, e.g., [29]), sn.u/ D (3.20) u / #3 .0/ #1 . 2K u ; #2 .0/ #4 . 2K / dn.u/ D cn.u/ D u / #4 .0/ #2 . 2K u ; #2 .0/ #4 . 2K / u / #4 .0/ #3 . 2K u : #3 .0/ #4 . 2K / By (3.14), the half-period ratio and the elliptic nome q of the theta functions are D (3.21) i iK 0 D K 2 and qDe K 0 K De 2 2 : If we take into account the fact that #3 .0/2 D (3.22) 2K along with equation (3.16), we can write equations for the distances between the turning points that involve only the original parameters: ˇ ˛ D #22 .0/ (3.23) #3 . !2 /#4 . !2 / ; #1 . !2 /#2 . !2 / ˇ 0 ˛ D #32 .0/ ˇ ˛ 0 D #3 .0/2 #1 . !2 /#3 . !2 / ; #2 . !2 /#4 . !2 / #2 . !2 /#4 . !2 / ; #1 . !2 /#3 . !2 / giving (2.17). These equations determine the endpoints ˛; ˛ 0 ; ˇ 0 ; ˇ up to a shift. To fix the shift we use equation (2.12) at the points ˛ 0 and ˇ 0 to obtain Z ˇ0 !.´ C i0/ C !.´ i0/ d´ D .1 /ˇ 0 C .1 C /˛ 0 : (3.24) ˛0 Writing this integral in terms of u gives Z (3.25) KCiK 0 iK 0 1 .u u1 /r 0 .u/du K Z KiK 0 1 C .u u1 /r 0 .u/du D .1 /ˇ 0 C .1 C /˛ 0 K iK 0 796 P. M. BLEHER AND K. LIECHTY where (3.26) ˇ ˇ 0 .ˇ ˛/ sn2 .u/ ˇ.ˇ 0 ˛/ r.u/ D D .ˇ ˛/ sn2 .u/ .ˇ 0 ˛/ 1 ˇ 0 sn2 .u/ sn2 .u1 / sn2 .u/ sn2 .u1 / ; d r.u/: du r 0 .u/ D Note that r.˙iK 0 / D ˇ 0 and r.K ˙ iK 0 / D ˛ 0 . Integrating by parts gives (3.27) 2 ..K u1 /˛ 0 C ˇ 0 u1 / K Z Z KCiK 0 iK 0 KiK 0 iK 0 r.u/ du K r.u/ du D .1 /ˇ 0 C .1 C /˛ 0 K or equivalently Z (3.28) KCiK 0 iK 0 Z r.u/du C KiK 0 iK 0 r.u/du D 0: We can evaluate these integrals by first writing r.u/ in the form sn2 .u/ ˇ ˇ0 (3.29) r.u/ D ˇ C sn2 .u1 / 1 sn22 .u/ sn .u / 1 and using the functions ‚.u/ D #4 (3.30) u 2K ; Z.u/ D ‚0 .u/ : ‚.u/ The addition formulae for the sn and Z functions are (see [29]) (3.31) sn.u ˙ a/ D sn.u/ cn.a/ dn.a/ ˙ sn.a/ cn.u/ dn.u/ ; 1 k 2 sn2 .a/ sn2 .u/ Z.u ˙ a/ D Z.u/ ˙ Z.a/ k 2 sn.u/ sn.a/ sn.u ˙ a/: Thus we have Z.u a/ Z.u C a/ C 2Z.a/ D k 2 sn.u/ sn.a/.sn.u C a/ C sn.u a// (3.32) k 2 sn.u/ sn.a/Œ2 sn.u/ cn.a/ dn.a/ 1 k 2 sn2 .a/ sn2 .u/ 2k 2 sn.a/ cn.a/ dn.a/ sn2 .u/ : D 1 k 2 sn2 .a/ sn2 .u/ D EXACT SOLUTION OF THE SIX-VERTEX MODEL 797 We also have the half- and quarter-period identities sn.u C iK 0 / D (3.33) 1 ; k sn.u/ cn.u C iK 0 / D dn.u C iK 0 / D i i dn.u/ ; k sn.u/ cn.u/ : sn.u/ In particular, notice that sn.u11 / D k sn.u1 CiK 0 /. Using the addition formulae (3.32), we can write r.u/ as ˇ ˇ0 r.u/ D ˇ C 2k 2 sn.a/ cn.a/ dn.a/ sn2 .u1 / (3.34) .Z.u a/ Z.u C a/ C 2Z.a//; where a D u1 C iK 0 (see Figure 3.1). From (3.33) and (3.19), it follows that (3.35) ˇ ˇ0 D K: 2k 2 sn.u1 C iK 0 / cn.u1 C iK 0 / dn.u1 C iK 0 / sn2 .u1 / Thus we can write (3.34) as r.u/ D ˇ K Z.u u1 iK 0 / (3.36) Z.u C u1 C iK 0 / C 2Z.u1 C iK 0 / : If we write u D x C iK 0 in the first integral of (3.28) and u D x iK 0 in the second, we obtain Z K 2ˇ 4KZ.u1 C iK 0 / KŒZ.x u1 / Z.x C u1 C 2iK 0 / (3.37) 0 C Z.x u1 2iK 0 / Z.x C u1 / dx D 0: From the periodic properties of #4 , it follows that (3.38) Z.u ˙ 2iK 0 / D Z.u/ i ; K so we can write (3.37) as Z K 2ˇ 4KZ.u1 C iK 0 / 2 i (3.39) 0 C 2KŒZ.x C u1 / Z.x u1 / dx D 0: This equation is readily integrated, as Z is the logarithmic derivative of the ‚ function. Integrating gives (3.40) ‚.x C u1 / K 0 D .2ˇ 4KZ.u1 C iK 0/ 2 i /x C 2K log ‚.x u1 / xD0 ‚.K C u1 / ‚.u1 / D 2Kˇ 4K 2 Z.u1 C iK 0 / 2K i C 2K log : ‚.K u1 / ‚.u1 / 798 P. M. BLEHER AND K. LIECHTY The logarithmic term in this equation is 0 due to the evenness and periodicity (period 2K) of the ‚-function and the fact that the relevant term in the integration is real on the entire contour of integration. Thus we have that ˇ D 2KZ.u1 C iK 0 / C i: (3.41) From (1.41), we can deduce that Z.u1 C iK / D 2K 0 (3.42) #20 . !2 / Ci #2 . !2 / and write (3.41) as ˇ D (3.43) #20 . !2 / : #2 . !2 / This equation, together with equations (3.23) and (3.21), determine the endpoints ˛; ˛ 0 ; ˇ 0 ; ˇ. In fact, similar to (3.43) we have the following explicit formulae for the other endpoints: (3.44) ˛ D #10 . !2 / ; #1 . !2 / ˛ 0 D #40 . !2 / ; #4 . !2 / ˇ 0 D #30 . !2 / ; #3 . !2 / which follow from (3.23), (3.43), and the identities (see [29]), #10 .´/#4 .´/ #4 .0/2 #2 .´/#3 .´/ ; #1 .´/ # 0 .´/#2 .´/ #2 .0/3 #3 .´/#4 .´/ ; #20 .´/ D 1 #1 .´/ # 0 .´/#3 .´/ #3 .0/2 #2 .´/#4 .´/ : #30 .´/ D 1 #1 .´/ #40 .´/ D (3.45) Similarly, in addition to the formulae (3.23) for distances between turning points, we get (2.16). P ROOF OF P ROPOSITION 2.2: From equations (3.13), (3.1), and (3.15) we obtain formula (2.20); compare [31]. From formula (2.20) and equations (2.8) and (2.14), we obtain that the equilibrium density function .x/ is given by formulae (2.18). We are left to prove formula (2.19). By (3.1), (3.15), and (2.18), on the interval Œˇ 0 ; ˇ, .x/ D (3.46) It follows that (3.47) Z ˇ ˇ0 1 uC .x/ for x 2 Œˇ 0 ; ˇ: iK 1 .x/dx D iK Z ˇ ˇ0 1 uC .x/dx D iK Z 0 iK 0 ur 0 .u/du; EXACT SOLUTION OF THE SIX-VERTEX MODEL 799 where r.u/ is defined in (3.26). If we use equation (3.36) together with formula (3.41), we can write r.u/ as r.u/ D i KŒZ.u u1 iK 0 / Z.u C u1 C iK 0 /: (3.48) Integrating (3.47) by parts, we get Z 0 ur 0 .u/du D (3.49) iK 0 ‚.u1 iK 0 /‚.u1 C 2iK 0 / ˇ iK K K log ‚.u1 /‚.u1 C iK 0 / 0 0 0 : Using the fact that ‚ is an even function and the identity ‚.u C 2iK 0 / D e i e i e (3.50) i u K ‚.u/; we can write (3.49) as Z 0 K 0 i u1 0 0 0 0 ur .u/du D ˇ iK K C K i C K K (3.51) iK 0 0 0 D i.K ˇ K u1 /: Remark: There is some question here as to which branch of the logarithm to take, but it is clear that we have chosen the correct branch, as it is the only one that gives Rˇ 0 < ˇ 0 .x/dx < 1. Thus, from (3.47) and (3.51), we have Z ˇ 1 i.K ˇ 0 K 0 u1 / .x/dx D iK ˇ0 (3.52) ˇ0 1 ˇ 0 K 0 u1 D1 I D1 K K 2 2 hence by (2.18), Z (3.53) ˇ Z .x/dx D 0 D ˇ0 0 ˇ0 2 Z .x/dx C C1 ˇ ˇ0 .x/dx ˇ0 1 1C D ; 2 2 2 which proves formula (2.19). P ROOF OF P ROPOSITION 2.3: By taking x D ˇ we obtain from (2.30) that (3.54) l D 2g.ˇ/ V .ˇ/ D 2g.ˇ/ .1 /ˇ: We also have that (3.55) lim Œg.A/ log A D 0I A!1 800 P. M. BLEHER AND K. LIECHTY hence l D 2 lim Œg.A/ g.ˇ/ log A .1 /ˇ A!1 Z A !.´/ d´ log A .1 /ˇ: D 2 lim (3.56) A!1 ˇ Writing this integral in terms of u (so ´ D r.u/) gives Z (3.57) 1 0 l D 2 lim .u u1 /r .u/du C log A .1 /ˇ A!1 0 K Z B 1 0 .u u1 /r .u/du C log r.B/ .1 /ˇ; D 2 lim B!u1 0 K B where A D r.B/. Integrating by parts gives l D 2 lim B!u1 (3.58) ˇB ˇ 1 .u u1 /r.u/ˇˇ K uD0 Z B 1 r.u/du C log r.B/ .1 /ˇ: K 0 From (3.26) we obtain that r.0/ D ˇ and .ˇ ˇ 0 / sn.u1 / 2 sn0 .u1 / .ˇ ˇ 0 / sn.u1 / D KI D 2 cn.u1 / dn.u1 / lim .B u1 /r.B/ D (3.59) B!u1 hence (3.60) ˇ.10 / l D 2 1 C 2 Z B 1 r.u/du log r.B/ .1 /ˇ 2 lim B!u1 K 0 Z B 1 r.u/du log r.B/ : D 2 2 lim B!u1 K 0 Using equation (3.48) for r.u/, we immediately get that (3.61) 1 K Z B 0 B i ‚.B C u1 C iK 0 / r.u/du D C log : K ‚.B u1 iK 0 / EXACT SOLUTION OF THE SIX-VERTEX MODEL 801 Now using equation (3.26) for r.u/, we have lim B!u1 (3.62) 1 K Z B r.u/du log r.B/ 0 ‚.B C u1 C iK 0 / sn2 .u1 / sn2 .B/ u1 i C lim log D B!u1 K ‚.B u1 iK 0 / ˇ sn2 .u1 / ˇ 0 sn2 .B/ u1 i ‚.2u1 C iK 0 /2 sn.u1 / sn0 .u1 / D C log K ‚0 .iK 0 /.ˇ ˇ 0 / sn2 .u1 / i u1 2e K #1 . uK1 / u1 i C log D K #10 .0/ 2#1 .!/ D log : #10 .0/ Plugging this into (3.60) gives #10 .0/ ; l D 2 C 2 log 2#1 .!/ (3.63) and thus we obtain that e l=2 D (3.64) #10 .0/ : 2e#1 .!/ 4 Riemann-Hilbert Approach: Interpolation Problem The Riemann-Hilbert approach to discrete orthogonal polynomials is based on the following interpolation problem (IP), which was introduced by Borodin and Boyarchenko [9] as the “discrete Riemann-Hilbert problem.” See also the monograph [2] of Baik, Kriecherbauer, McLaughlin, and Miller, in which it is called the “interpolation problem.” We will consider the lattice Ln defined in (1.26) and the weight wn .x/ defined in (1.24). I NTERPOLATION P ROBLEM. For a given n D 0; 1; : : :, find a 2 2 matrixvalued function Pn .´/ D .Pnij .´//1i;j 2 with the following properties: (1) Analyticity. Pn .´/ is an analytic function of ´ for ´ 2 C n Ln . (2) Residues at poles. At each node x 2 Ln , the elements Pn11 .´/ and Pn21 .´/ of the matrix Pn .´/ are analytic functions of ´, and the elements Pn12 .´/ and Pn22 .´/ have a simple pole with the residues (4.1) Res Pnj 2 .´/ D wn .x/Pnj1 .x/; ´Dx j D 1; 2: (3) Asymptotics at infinity. There exists a function r.x/ > 0 on Ln such that (4.2) lim r.x/ D 0; x!1 802 (4.3) P. M. BLEHER AND K. LIECHTY and such that as ´ ! 1, Pn .´/ admits the asymptotic expansion n P1 P2 ´ 0 Pn .´/ I C C 2 C ; 0 ´n ´ ´ [ 1 D x; r.x/ ; ´2Cn x2Ln where D.x; r.x// denotes a disk of radius r.x/ > 0 centered at x and I is the identity matrix. It is not difficult to see (see [2, 9]) that the IP has a unique solution, which is Pnn .´/ C.wn Pnn /.´/ (4.4) Pn .´/ D .hn;n1 /1 Pn;n1 .´/ .hn;n1 /1 C.wn Pn;n1 /.´/ where the Cauchy transformation C is defined by the formula X f .x/ ; (4.5) C.f /.´/ D ´x x2Ln and Pnk .´/ D ´k C are the orthogonal polynomials defined in (1.27). Because of the orthogonality condition, as ´ ! 1, C.wn Pnk /.´/ D 1 1 1 X X X wn .x/Pnk .x/ xj wn .x/Pnk .x/ ´x ´j C1 j D0 x2Ln x2Ln (4.6) D hnk C ´kC1 1 X j DkC2 aj ; ´j which justifies asymptotic expansion (4.3). We have that h1 n;n1 D ŒP1 21 : hnn D ŒP1 12 ; (4.7) 5 Reduction of IP to RHP 5.1 Preliminary Considerations We would like to reduce the interpolation problem to a Riemann-Hilbert problem (RHP). Introduce the function ….´/ D (5.1) 2 n ´ sin : n 2 Observe that ….xk / D 0; 0 … .xk / D .1/ ; k (5.2) for xk D i n xk exp 2 2k 2 Ln : n D .1/k EXACT SOLUTION OF THE SIX-VERTEX MODEL Introduce the upper-triangular matrices Du˙ .´/ (5.3) n .´/ ˙ 1 w….´/ e D 0 1 and the lower-triangular matrices Dl˙ (5.4) D ….´/1 wn1.´/ e ˙ 0 i n´ 2 i n´ 2 ! ! ….´/ 1 0 ….´/1 i n´ D 1 0 ….´/ ….´/w e ˙ 2 n .´/ Define the matrix-valued functions, ( Run D Pn .´/ (5.5) and ( Rln D Pn .´/ (5.6) DuC .´/ Du .´/ 803 ! 0 1 : when Im ´ 0; when Im ´ 0; DlC .´/ when Im ´ 0; Dl .´/ when Im ´ 0: From (4.4) we have that Run .´/ 0 nn .´/ ˙ wn .´/P e ….´/ Pnn .´/ D@ h1 n;n1 Pn;n1 .´/ i n´ 2 i n´ wn .´/h1 n;n1 Pn;n1 .´/ ˙ 2 e ….´/ C C.wn Pnn /.´/ C h1 n;n1 C.wn Pn;n1 /.´/ 1 A when ˙ Im ´ 0; and Rln .´/ 0 D C.wn Pnn /.´/ ˙ i n´ Pnn .´/ e 2 ….´/ wn .´/ @ 1 1 h C.wn Pn;n1 /.´/ ˙ i n´ hn1 Pn;n1 .´/ n;n1 wn .´/ e 2 ….´/ 1 ….´/C.wn Pnn /.´/ A ….´/h1 C.w P /.´/ n n;n1 n;n1 when ˙ Im ´ 0: Observe that the functions Run .´/ and Rln .´/ are meromorphic on the closed quadrants of the complex plane, and they are two-valued on the real and imaginary axes. Their possible poles are located on the lattice Ln . An important result is that, in fact, due to some cancellations, they do not have any poles at all. We have the following proposition: P ROPOSITION 5.1 The matrix-valued functions Run .´/ and Rln .´/ have no poles, and on the real line they satisfy the following jump conditions at x 2 R: ! n iwn .x/ 1 (5.7) ; RunC .x/ D Run .x/jRu.x/; jRu .x/ D 0 1 804 P. M. BLEHER AND K. LIECHTY and (5.8) RlnC .x/ D Rln .x/jRl .x/; jRl .x/ D 1 i wn n .x/ 0 : 1 P ROOF : It follows from the definition of Run .´/ that all possible poles of Run .´/ are located on the lattice Ln . Let us show that the residue of all these poles is equal to 0. Consider any xk 2 Ln . The residue of the matrix element Run;12 .´/ at xk is equal to (5.9) Res Run;12 .´/ D ´Dxk wn .xk /Pnn .xk / .1/k C wn .xk /Pnn .xk / D 0: .1/k Similarly, we get that Res Rn;22 .´/ D 0I (5.10) ´Dxk hence Run .´/ has no pole at xk . Likewise, the residue of the matrix element Rln;11 .´/ at xk is equal to (5.11) Res Rln;11 .´/ D ´Dxk Pnn .xk / wn .xk /Pnn .xk /.1/k D 0: wn .xk / .1/k In the same way we obtain that Res Rn;21 .´/ D 0: (5.12) ´Dxk In the entry Rln;21 .´/, the pole of the function C.wn Pn /.´/ at ´ D xk is cancelled by the zero of the function ….´/; hence Rln;21 .´/ has no pole at xk . Similarly, Rln;22 .´/ has no pole at xk as well; hence Rln .´/ has no pole at xk . Let us evaluate the jump matrices at x 2 R. From (5.5) we have that ! wn .x/ nx 1 ….x/ 2i sin 2 jRu .x/ D Du .x/1 DuC .x/ D 0 1 ! (5.13) 1 n iwn .x/ D ; 0 1 which proves (5.7). Similarly, jRl .x/ (5.14) which proves (5.8). D Dl .x/1 DlC .x/ D 1 1 2i sin nx ….x/w 2 n .x/ 1 0 D ; i wn 1 n .x/ 0 1 EXACT SOLUTION OF THE SIX-VERTEX MODEL Ω∆ + Ω+ Ω− α’ 805 Ω+ β’ Ω∆ − Ω− F IGURE 5.1. The contour †. α’ β’ 0 F IGURE 5.2. The contour †R . 5.2 Reduction of IP to RHP Let us discuss how to reduce the interpolation problem to a Riemann-Hilbert problem. We follow the work [2] with some modifications. Denote (5.15) D Ln \ Œ˛ 0 ; ˇ 0 ; r D Ln n : Consider the oriented contour † on the complex plane depicted in Figure 5.1, in which the horizontal lines are Im ´ D "; 0; ", where " > 0 is a small positive constant that will be determined later, and the vertical segments pass through the r points ´ D ˛ 0 and ´ D ˇ 0 . Also consider the regions ˙ and ˙ bounded by the contour †; see Figure 5.1. Observe that the regions r ˙ consist of two connected . components, to the left and to the right of ˙ Define K R .´/K 1 u n n Kn Rln .´/K1 n Kn Pn .´/K1 n n (5.16) Rn .´/ D for ´ 2 r ˙; for ´ 2 ˙; otherwise: 1 0 where Kn D 0 ni . Define a contour †R by adding to the contour † a vertical segment Œi"; i"; see Figure 5.2. If A C is a set on the complex plane and b 2 C, then, as usual, we denote (5.17) A C b D f´ D a C b; a 2 Ag: P ROPOSITION 5.2 The matrix-valued function Rn .´/ has the following jumps on the contour †R : (5.18) RnC .´/ D Rn .´/jR .´/; 806 where ˆ P. M. BLEHER AND K. LIECHTY 1 wn .´/ 0 1 ! when ´ 2 .1; ˛ 0 / [ .ˇ 0 ; 1/; ! 1 0 when ´ 2 Œ˛ 0 ; ˇ 0 ; 2 w .´/1 1 / . n n 1 0 i n´ ˙ 2 (5.19) jR .´/ D i wn .´/e A @1 n ….´/ Kn Du˙ .´/K1 n D 0 1 when ´ 2 .1; ˛ 0 / [ .ˇ 0 ; 1/ ˙ i"; 0 1 ….´/1 0 @ A Kn Dl˙ .´/K1 ˙ i n´ n D 2 i n e ….´/ wn .´/ when ´ 2 .˛ 0 ; ˇ 0 / ˙ i"; Kn Dl˙ .´/1 Du˙ .´/K1 n D ….´/ i n´ ˙ i n´ 2 n i wn .´/e i n´ i ˙ 2 n e ! i 1 ˙ 2 n wn .´/ e when ´ 2 .0; ˙i"/ C ˛ 0 or ´ 2 .0; ˙i"/ C ˇ 0 ; Kn D0˙ .´/K1 n when ´ 2 .0; ˙i"/; and (5.20) D0˙ .´/ D 1 0 i n´ n´ e ˙ 2 2 sinh.n´/e….´/ 1 ! : Notice that the jumps on vertical contours close to the origin, D0˙ .´/, are exponentially close to the identity matrix. 6 First Transformation of the RHP Define the matrix function Tn .´/ as follows from the equation (6.1) Rn .´/ D e nl 2 3 l Tn .´/e n.g.´/ 2 /3 ; where the Lagrange multiplier l and the function g.´/ are as described in Section 2 and 3 D . 10 10 / is the third Pauli matrix. Then Tn .´/ satisfies the following Riemann-Hilbert problem: (1) Tn .´/ is analytic in C n †R . (2) TnC .´/ D Tn .´/jT .´/ for ´ 2 †R , where ( l l e n.g .´/ 2 /3 jR .´/e n.gC .´/ 2 /3 for ´ 2 R (6.2) jT .´/ D l l for ´ 2 †R n R: e n.g.´/ 2 /3 jR .´/e n.g.´/ 2 /3 EXACT SOLUTION OF THE SIX-VERTEX MODEL (3) Tn .´/ I C T1 ´ C T2 ´2 807 C as ´ ! 1. From (2.22) we have that g.´/ D log ´ C O.´1 / (6.3) as ´ ! 1: This implies that ŒT1 12 D e nl ŒR1 12 : (6.4) Let’s take a closer look at the behavior of the jump matrix jT described in (6.2) on the horizontal segments of †R . We have that (6.5) jT .´/ D ! 8 nG.´/ e e n.gC .´/Cg .´/V .´/l/ ˆ ˆ when ´ 2 .1; ˛ 0 / [ .ˇ 0 ; 1/; ˆ ˆ ˆ 0 e nG.´/ ˆ ˆ ! ˆ ˆ ˆ e nG.´/ 0 ˆ ˆ ˆ when ´ 2 .˛ 0 ; ˇ 0 /; ˆ ˆ /2 e n.gC .´/Cg .´/V .´/l/ e nG.´/ . n ˆ ˆ ˆ 1 0 ˆ ˆ e ˙nG.´/ ˆ < 1 ˙ i n "n @ when ´ D x C i" 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/ ˙ i"; 1e e A ˆ 1 ˆ ˆ 00 1 ˆ ˆ ˆ 1 ˙ en.2g.´/lV .´// ˆ i nx "n ˆ ˆ @ ˆ 1e e A when ´ D x ˙ i" 2 .1; ˛/ [ .ˇ; 1/ ˙ i"; ˆ ˆ ˆ 0 1 ˆ ˆ ! ˆ ˆ ˆ ….´/1 0 ˆ ˆ when ´ D x ˙ i" 2 .˛ 0 ; ˇ 0 / ˙ i": :̂ i n ˙ i nx 2 e n.2g.´/lV .´// ….´/ e ˚ According to the properties of the g-function, we have the following proposition: P ROPOSITION 6.1 The jump function jT has the following large-n asymptotics on the real axis: ! e nG.´/ 0 for ´ 2 .˛ 0 ; ˇ 0 /; O.e nC.´/ / e nG.´/ ! e nG.´/ 1 for ´ 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/; 0 e nG.´/ ! (6.6) jT .´/ D 1 O.e nC.´/ / for ´ 2 .1; ˛/ [ .ˇ; 1/; 0 1 ! n 1 e ˙nG.´/ O.e / for ´ 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/ ˙ i"; 0 1 where C.´/ is a positive continuous function on any subset of the given interval that is bounded away from the endpoints of each interval and satisfies (6.7) C.´/ > cj´ C 1j for some c > 0: 808 P. M. BLEHER AND K. LIECHTY α α’ β’ 0 β F IGURE 7.1. The contour †S . 7 Second Transformation of the RHP The second transformation is based on two observations. The first is the wellknown “opening of the lenses” in a neighborhood of the unconstrained support of the equilibrium measure. Namely, notice that, for x 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/, the jump matrix jT .x/ factors as (7.1) jT .x/ D e nG.´/ 1 0 e nG.´/ D 1 e nG.x/ 0 1 0 1 1 0 1 e nG.x/ 0 1 D j .x/jM jC .x/; which allows us to reduce the jump matrix jT to the one jM plus asymptotically small jumps on the lens boundaries. The second observation consists of two facts. First, the jumps on the segments Œ˛ 0 ; ˇ 0 ˙ i" behave, for large n, as ˙e ˙i n´=.2 / . Second, note that, for x 2 Œ˛ 0 ; ˇ 0 , G.x/ is a linear function with slope i . With these facts in mind, we make the second transformation of the RHP. Let (7.2) Sn .´/ D 8 ˆ Tn .´/jC .´/1 ˆ ˆ ˆ ˆ ˆ Tn .´/j .´/ ˆ ˆ ! ˆ i n´ ˆ 2 ˆ 0 ˆ < Tn .´/ n i e i i n´ e 2 0 n ! ˆ i n´ ˆ ˆ ˆ e 2 0 ˆ n i ˆ Tn .´/ ˆ ˆ n i i n´ ˆ e 2 0 ˆ ˆ :̂ T .´/ n for ´ 2 f.˛; ˛ 0 / [ .ˇ 0 ; ˇ/g .0; i "/; for ´ 2 f.˛; ˛ 0 / [ .ˇ 0 ; ˇ/g .0; i "/; for ´ 2 .˛ 0 ; ˇ 0 / .0; i "/; for ´ 2 .˛ 0 ; ˇ 0 / .0; i "/; otherwise: This function satisfies a similar RHP to T, but jumps now occur on a new contour, †S , which is obtained from †R by adding the two segments .˛ i"; ˛ C i"/ and .ˇ i"; ˇ C i"/; see Figure 7.1. EXACT SOLUTION OF THE SIX-VERTEX MODEL 809 On the horizontal segments for which the jump function jS differs from jT , we have that, as n ! 1, (7.3) jS .´/ D ! 8 0 1 ˆ ˆ ˆ ˆ ˆ 1 0 ˆ ˆ ! ˆ ˆ ˆ 1 C O.e "n= / O.e nŒG.´/ = ˆ ˆ ˆ ˆ ˆ e nG.´/ 1 ˆ ˆ ! ˆ ˆ ˆ "n= nŒG.´/ = ˆ / O.e 1 C O.e ˆ ˆ ˆ < e nG.´/ 1 ! n= / ˆ 1 C O.e 0 ˆ ˆ ˆ ˆ n i n.2g.´/lV .´// ˆ 1 C O.e n= / ˆ e ˆ ! ˆ ˆ ˆ 1 C O.e n= / 0 ˆ ˆ ˆ ˆ i n.2g.´/lV .´// ˆ 1 C O.e n= / ˆ n ˆ e ˆ ! ˆ ˆ ˆ e n i.1C/ 0 ˆ :̂ n.gC .´/Cg .´/lV .´// e n i.1C/ e for ´ 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/; for ´ i" 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/; for ´ C i" 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/; for ´ 2 fŒ˛ 0 ; ˇ 0 C i"g; for ´ 2 fŒ˛ 0 ; ˇ 0 i"g; for ´ 2 Œ˛ 0 ; ˇ 0 : By formula (2.32) for the G-function and the upper constraint (2.10) on the density , we obtain that, for sufficiently small > 0, 0 < Re G.x ˙ i/ D 2 .x/ C O. 2 / < C O. 2 / for x 2 .˛; ˛ 0 / [ .ˇ 0 ; ˇ/: This, combined with property (2.30) of the g-function, implies that all jumps on horizontal segments are exponentially close to the identity matrix, provided that they are bounded away from the segment Œ˛; ˇ. For what follows we denote Z ˇ .x/dx D C n .1 C /; (7.4) n D C n2 0 so that e n i.1C / D e i n : (7.5) 8 Model RHP The model RHP appears when we drop in the jump matrix jS .´/ the terms that vanish as n ! 1: (1) M.´/ is analytic in C n Œ˛; ˇ. (2) MC .´/ D M .´/jM .´/ for ´ 2 Œ˛; ˇ, where ! 0 1 for ´ 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ; (8.1) jM .´/ D 1 0 e i n 3 for ´ 2 Œ˛ 0 ; ˇ 0 : 810 P. M. BLEHER AND K. LIECHTY (3) As ´ ! 1; M1 M2 C 2 C : ´ ´ This model problem was first solved, in the general multicut case, in [12], and is solved in two steps. In the first step, we solve the following auxiliary RHP: (1) Q.´/ is analytic in C n Œ˛; ˛ 0 [ Œˇ 0 ; ˇ. 0 1 / for ´ 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ. (2) QC .´/ D Q .´/. 1 0 1 (3) Q.´/ D I C O.´ / as ´ ! 1. This RHP has the unique solution (see [12]) ! 1 1 M.´/ I C (8.2) Q.´/ D (8.3) .´/C .´/ 2 .´/ 1 .´/ 2i where .´/ D (8.4) .´/ .´/ 2i .´/C 1 .´/ 2 .´ ˛/.´ ˇ 0 / .´ ˛ 0 /.´ ˇ/ 1=4 with cuts on Œ˛; ˛ 0 [ Œˇ 0 ; ˇ, taking the branch such that .´/ 1 as ´ ! 1. To solve the model RHP described in (8.1) and (8.2), we again use elliptic functions. Define the function #3 .s C d C c/ (8.5) f .s/ D #3 .s C d / where #3 is as defined in (1.37) with elliptic nome 2 i i 2 ; D De qDe 2 and d and c are arbitrary complex numbers. Notice that f has the periodic properties f .s C / D f .s/; (8.6) f .s C / D e 2ic f .s/; and that f is an even function. Now let u.´/ D u.´/ Q D 2K 2 (8.7) Z ´ ˇ d´0 p R.´0 / where u is as defined in (3.1). Then uQ is two-valued on Œ˛; ˇ and satisfies uQ C .x/ uQ .x/ D (8.8) for x 2 Œ˛ 0 ; ˇ 0 : Also, ; uQ ˙ .˛ 0 / D ˙ ; uQ ˙ .ˇ 0 / D ˙ ; uQ ˙ .ˇ/ D 0I 2 2 2 2 p p compare Figure 3.1. Because R.x/C D R.x/ for x 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ, it immediately follows that (8.9) (8.10) uQ ˙ .˛/ D uQ C .x/ C uQ .x/ D 0 for x 2 Œˇ 0 ; ˇ; EXACT SOLUTION OF THE SIX-VERTEX MODEL 811 and that (8.11) uQ C .x/ C uQ .x/ D uQ C .˛ 0 / uQ C .ˇ 0 / C uQ .˛ 0 / uQ .ˇ 0 / D for x 2 Œ˛; ˛ 0 : We now define f1 .´/ D (8.12) Q C d C 2n / #3 .u.´/ ; #3 .u.´/ Q C d/ #3 .u.´/ Q C d C 2n / ; f2 .´/ D #3 .u.´/ Q C d/ for ´ 2 C n Œ˛; ˇ; where d is an arbitrary complex number. It then follows from (8.6) and (8.8) that f1C .x/ D e i n f1 .x/; (8.13) f2C .x/ D e i n for x 2 Œ˛ 0 ; ˇ 0 ; f2 .x/; and from (8.6), (8.10), and (8.11) that (8.14) f1C .x/ D f2 .x/ and f2C .x/ D f1 .x/ for x 2 Œ˛; ˛ 0 [ Œˇ 0 ˇ: Define the matrix-valued function 0 (8.15) F.´/ D n #3 .u.´/Cd Q 1C 2 / # . u.´/Cd Q 3 1/ @ n #3 .u.´/Cd Q 2C 2 / #3 .u.´/Cd Q 2/ 1 n Q #3 .u.´/Cd 1C 2 / #3 .u.´/Cd Q 1/ A n Q #3 .u.´/Cd 2C 2 / #3 .u.´/Cd Q 2/ where d1 and d2 are yet undetermined complex constants. Then, from (8.13) and (8.14) we have that i n e 0 FC .x/ D F .x/ for x 2 Œ˛ 0 ; ˇ 0 ; 0 e i n (8.16) 0 1 FC .x/ D F .x/ for x 2 Œ˛; ˛ 0 [ Œˇ 0 ; ˇ: 1 0 We can now combine (8.3) and (8.15) to obtain M.´/ D (8.17) 0 n Q .´/C 1 .´/ #3 .u.´/Cd 1C 2 / 1 @ 2 #3 .u.´/Cd Q 1/ F.1/ n Q .´/ 1 .´/ #3 .u.´/Cd 2C 2 / 2i #3 .u.´/Cd Q 2/ where (8.18) 1 n Q .´/ 1 .´/ #3 .u.´/Cd 1C 2 / 2i #3 .u.´/Cd Q 1/ A n Q .´/C 1 .´/ #3 .u.´/Cd 2C 2 / 2 #3 .u.´/Cd Q 2/ 0 F.1/ D #3 .u Q 1 Cd1 C 2n / @ #3 .uQ 1 Cd1 / 0 1 0 #3 .u Q 1 Cd2 C 2n / #3 .u Q 1 Cd2 / A Q This matrix satisfies conditions (8.1) and (8.2) of the model and uQ 1 u.1/. RHP, but may not be analytic on C n Œ˛; ˇ, as it may have some poles at the zeroes of #3 .˙u.´/ Q C d1;2 /. However, we can choose the constants d1 and d2 such that 812 P. M. BLEHER AND K. LIECHTY these zeroes coincide with the zeroes of .´/ ˙ 1 .´/ and are thus cancelled in the product. First consider the zeroes of .´/˙ 1 .´/. These are the zeroes of 2 .´/˙1 and thus of 4 .´/ 1; thus there is only one zero, which uniquely solves the equation p.´/ (8.19) .´ ˛/.´ ˇ 0 / D 1; .´ ˛ 0 /.´ ˇ/ which is (8.20) x0 D ˇ˛ 0 ˛ˇ 0 2 .˛ 0 ; ˇ 0 /: .˛ 0 ˛/ C .ˇ ˇ 0 / It is easy to check that .x0 / D 1; thus x0 is the unique zero of .´/ 1 .´/, whereas there are no zeroes of .´/ C 1 .´/ on the specified sheet. We use here the change of variables v defined in (3.2). Notice that, by (3.19), (8.21) v.x0 / D ˇ0 ˛ dn2 .u1 / D ; ˇ0 ˛0 k 2 cn2 .u1 / implying that sn2 .u.x0 // D (8.22) dn2 .u1 / : k 2 cn2 .u1 / Since x0 2 .˛ 0 ; ˇ 0 /, we must have u.x0 / 2 .iK 0 ; K C iK 0 / (if we choose to take uC ). Since sn2 is a one-to-one function on this interval there is a unique point u0 2 .iK 0 ; K C iK 0 / such that sn2 .u0 / D dn2 .u1 /=k 2 cn2 .u1 /. The simple period identity sn.u C K C iK 0 / D (8.23) dn.u/ k cn.u/ along with (8.22) gives that we must have u0 D u.x0 / D K u1 C iK 0 I (8.24) thus .K u1 C iK 0 / D C uQ 1 : 2K 2 2 We now consider zeroes of the function #3 .u.´/ Q d / #3 .u.´/ Q C d /. The zeroes of this function are the solutions to the equation (8.26) u.´/ Q d D .2m C 1/ C .2k C 1/ 2 2 for any m; k 2 Z. Because uQ maps the first sheet of X to the rectangular domain Œ0; 2 Œ 2 ; 2 , it is clear that this equation can have at most one solution, and without any loss of generality we may take m D k D 0. Then, if we want the solution of this equation to be x0 , we need to let (8.27) d D u.x Q 0 / .1 C / D uQ 1 : 2 (8.25) u.x Q 0/ D EXACT SOLUTION OF THE SIX-VERTEX MODEL 813 This choice of d also ensures that #3 .u.´/ Q C d / #3 .u.´/ Q d / has no zeroes on the first sheet of X . We can then let d1 D d; (8.28) d2 D d; so that (8.17) and (8.18) become 0 M.´/ D Q C 2n / .´/C 1 .´/ #3 .u.´/Cd 1 @ 2 #3 .u.´/Cd Q / F.1/ Q C 2n / .´/ 1 .´/ #3 .u.´/d 2i #3 .u.´/d Q / 0 (8.29) D 1 1 Q .´/C 1 .´/ #3 .u.´/C.nC 2 /!/ ! 2 #4 .u.´/C Q 1 @ 2/ F.1/ 1 Q .´/ 1 .´/ #3 .u.´/C.n 2 /!/ ! 2i #4 .u.´/ Q 2/ where (8.30) 1 Q C 2n / .´/ 1 .´/ #3 .u.´/Cd 2i #3 .u.´/Cd Q / A Q C 2n / .´/C 1 .´/ #3 .u.´/d 2 #3 .u.´/d Q / 1 0 F.1/ D #3 . 2n / @ #3 .0/ 0 0 #3 . 2n / #3 .0/ AD 1 Q .´/ 1 .´/ #3 .u.´/.nC 2 /!/ ! 2i #4 .u.´/ Q 2/ A 1 Q .´/C 1 .´/ #3 .u.´/.n 2 /!/ ! 2 #4 .u.´/C Q 2/ #4 .n!/ #3 .0/ 0 #4 .n!/ #3 .0/ 0 ! ; solving the model RHP. The asymptotics at infinity are M.´/ D I C (8.31) M1 C O.´2 / ´ where the matrix M1 has the form (8.32) M1 D 0 @ 1 #3 . u Q 1 d / .ˇ ˇ 0 /C.˛ 0 ˛/ Q 1 d C 2n /#3 .u 4i #3 .u Q 1 d C 2n /#3 .u Q 1 d / Q 1 Cd / .ˇ ˇ 0 /C.˛ 0 ˛/ #3 .u Q 1 Cd C 2n /#3 .u 4i #3 . u Q 1 Cd C 2n /#3 .u Q 1 Cd / A : The matrix M1 can be written in a cleaner fashion and in terms of the original parameters as follows: P ROPOSITION 8.1 We have that (8.33) ŒM1 12 D iA.!/#4 ..n C 1/!/ ; #4 .n!/ ŒM1 21 D A.!/#4 .n!/ ; i#4 ..n 1/!/ where (8.34) !D .1 C / ; 2 A.!/ D #10 .0/ : 2#1 .!/ For a proof of this proposition, see appendix D of [6]. Notice that since M solves the model RHP, we have that (8.35) det M.´/ D 1; ´ 2 C: 814 P. M. BLEHER AND K. LIECHTY 9 Parametrix at Outer Turning Points We now consider small disks D.˛; "/ and D.ˇ; "/ centered at the outer turning points. Denote D D D.˛; "/ [ D.ˇ; "/. We will seek a local parametrix Un .´/ defined on D such that ˚ (9.1) Un .´/ is analytic on D n †S ; (9.2) UnC .´/ D Un .´/jS .´/ for ´ 2 D \ †S ; Un .´/ D M.´/ I C O.n1 / uniformly for ´ 2 @D: (9.3) We first construct the parametrix near ˇ. The jumps jS are given by 0 1 1 0 ! for ´ 2 .ˇ "; ˇ/; 1 (9.4) jS .´/ D e nG.´/ 1 e nG.´/ ! 0 1 ! 0 1 for ´ 2 .ˇ; ˇ C i"/; for ´ 2 .ˇ; ˇ i"/; e nG.´/ e n.gC .´/Cg .´/V .´/l/ 0 e nG.´/ ! for ´ 2 .ˇ; ˇ C "/: If we let (9.5) Un .´/ D Qn .´/e n.g.´/ V .´/ l 2 2 /3 ; then the jump conditions on Qn become † QnC .´/ D Qn .´/jQ .´/ (9.6) where (9.7) jQ .´/ D 0 1 1 0 1 0 1 1 ! 1 0 1 1 ! 1 1 0 1 ! for ´ 2 .ˇ "; ˇ/; ! for ´ 2 .ˇ; ˇ C i"/; for ´ 2 .ˇ; ˇ i"/; for ´ 2 .ˇ; ˇ C "/; where orientation is from left to right on horizontal contours, and down to up on vertical contours, according to Figure 7.1. EXACT SOLUTION OF THE SIX-VERTEX MODEL 815 Qn can be constructed using Airy functions. The Airy function solves the differential equation y 00 D ´y and has the following asymptotics at infinity: 5 3=2 1 32 ´3=2 3 1 ´ Ai.´/ D p 1=4 e C O.´ / ; 48 2 ´ (9.8) 7 3=2 1 1=4 2 ´3=2 0 3 1C ´ C O.´ / ; Ai .´/ D p ´ e 3 48 2 as ´ ! 1 with arg ´ 2 . C "; "/ for any " > 0. If we let (9.9) y0 .´/ D Ai.´/; y1 .´/ D ! Ai.!´/; y2 .´/ D ! 2 Ai.! 2 ´/; where ! D e 2 i=3 , then the functions y0 , y1 , and y2 satisfy the relation † y0 .´/ C y1 .´/ C y2 .´/ D 0: (9.10) If we take (9.11) ˆˇ .´/ D y0 .´/ y2 .´/ y00 .´/ y20 .´/ ! y1 .´/ y2 .´/ y10 .´/ y20 .´/ ! y2 .´/ y1 .´/ y20 .´/ y10 .´/ ! y0 .´/ y1 .´/ y00 .´/ y10 .´/ ! for arg ´ 2 .0; 2 /; for arg ´ 2 . 2 ; /; for arg ´ 2 . ; 2 /; for arg ´ 2 . 2 ; 0/; then ˆˇ satisfies jump conditions similar to (9.7), but for jumps on rays emanating from the origin rather than from ˇ. We thus need to map the disk D.ˇ; "/ onto some convex neighborhood of the origin in order to take advantage of the function ˆˇ . Our mapping should match the asymptotics of the Airy function in order to have the matching property (9.3). To this end notice that, by (2.18), for t 2 Œˇ 0 ; ˇ, as t ! ˇ, .t/ D C.ˇ t/1=2 C O..ˇ t/3=2 /; (9.12) C > 0: It follows that, as ´ ! ˇ for ´ 2 Œˇ 0 ; ˇ, Z ˇ (9.13) .t/dt D C0 .ˇ ´/3=2 C O..ˇ ´/5=2 /; ´ Thus, 2 C0 D C: 3 2=3 Z 3 ˇ .t/dt 2 ´ is analytic at ˇ and so extends to a conformal map from D.ˇ; "/ (for small enough ") onto a convex neighborhood of the origin. Furthermore, (9.14) ˇ .´/ D (9.15) ˇ .ˇ/ D 0; 0 ˇ .ˇ/ > 0I 816 P. M. BLEHER AND K. LIECHTY therefore ˇ is real negative on .ˇ "; ˇ/ and real positive on .ˇ; ˇ C "/. Also, we can slightly deform the vertical pieces of the contour †S close to ˇ so that ˇ fD.ˇ; "/ (9.16) We now set Qn .´/ D Eˇn .´/ˆˇ n2=3 (9.17) so that (9.18) \ †S g D ."; "/ [ .i"; i"/: Un .´/ D Eˇn .´/ˆˇ n2=3 ˇ .´/ ˇ .´/ e n.g.´/ V .´/ l 2 2 /3 where Eˇn .´/ D M.´/Lˇn .´/1 ; (9.19) Lˇn .´/ n1=6 1 D p 2 1=4 .´/ ˇ n1=6 0 ! 0 1=4 .´/ ˇ 1 i ; 1 i 1=4 , which is positive on .ˇ; ˇ C "/ and has a cut ˇ ˇ on .ˇ "; ˇ/. We claim that En .´/ is analytic in D.ˇ; "/; thus Un .´/ has the ˇ jump conditions of jS . This is clear, as both M and Ln have the same constant jump, . 10 10 /, on the interval .ˇ "; ˇ and are analytic elsewhere. The only other ˇ possible singularity for either M or Ln is the isolated singularity at ˇ, and this ˇ is at most a fourth-root singularity and thus removable. It follows that En .´/ D ˇ M.´/Ln .´/1 is analytic on D.ˇ; "/; thus Un has the prescribed jumps in D.ˇ; "/. where we take the branch of We are left only to prove the matching condition (9.3). Using (9.8), one can check that, for ´ in each of the sectors of analyticity, ˆˇ .n2=3 ˇ .´// satisfies the following asymptotics as n ! 1: ˆˇ .n2=3 (9.20) ˇ .´// 1 1 D p n 6 3 2 e 2 3n ˇ .´/ ˇ .´/ 3=2 3 1 4 3 1 i 1 i C ˇ .´/ 3=2 48n 5 7 5i C O.n2 / 7i ; where we always take the principal branch of ˇ .´/3=2 . As such, two-valued for ´ 2 .ˇ "; ˇ/, so that Z ˇ 2 3=2 .t/dt: D i (9.21) ˇ .x/ 3 x ˙ Notice that, by (2.30) and (2.33), for x 2 .ˇ "; ˇ/, Z ˇ (9.22) 2g˙ .x/ V .x/ D l ˙ 2 i .t/dt: x ˇ .´/ 3=2 is EXACT SOLUTION OF THE SIX-VERTEX MODEL 817 This implies that Z Œ2gC .ˇ/ V .ˇ/ Œ2gC .x/ V .x/ D 2 i .t/dt; x ˇ Z (9.23) Œ2g .ˇ/ V .ˇ/ Œ2g .x/ V .x/ D 2 i ˇ .t/dt: x Combining these equations with (9.21) gives 2 1 3=2 (9.24) D .2g˙ .ˇ/ V .ˇ// .2g˙ .x/ V .x// : ˇ .x/ 3 2 ˙ This equation can be extended into the upper and lower planes, respectively, giving (9.25) 2 3 ˇ .´/ 3=2 D 1 .2g˙ .ˇ/ V .ˇ// .2g.´/ V .´// for ˙ Im ´ > 0: 2 Since, by (9.22), 2g˙ .ˇ/ V .ˇ/ D l, we get that 2 3 (9.26) ˇ .´/ 3=2 D g.´/ C l V .´/ C 2 2 for ´ throughout D.ˇ; "/. Plugging (9.20) and (9.26) into (9.18), we get (9.27) 1 1 Un .´/ D M.´/Lˇn .´/1 p n 6 3 2 3=2 1 i ˇ .´/ C 1 i 48n V .´/ l 2 2 /3 e n.g.´/ D M.´/ I C ˇ .´/ 14 3 5 5i 2 C O.n / 7 7i V .´/ l e n.g.´/ 2 2 /3 3=2 1 6i ˇ .´/ 2 C O.n / : 6i 1 48n Thus we have that Un satisfies conditions (9.1), (9.2), and (9.3). A similar construction gives the parametrix at ˛ (see [6]). Namely, if we let 2=3 Z 3 ´ .t/dt ; (9.28) ˛ .´/ D 2 ˛ then ˛ is analytic throughout D.˛; "/, real-valued on the real line, and has negative derivative at ˛. Also, let 1 0 (9.29) ˆ˛ .´/ D ˆˇ .´/ : 0 1 Then we can take (9.30) Un .´/ D E˛n .´/ˆ˛ .n2=3 ˛ .´//e l n.g.´/ V .´/ 2 2 /3 818 P. M. BLEHER AND K. LIECHTY for ´ 2 D.˛; "/, where E˛n .´/ D M.´/L˛n .´/1 ; (9.31) 1 L˛n .´/ D p 2 n1=6 ! 1 i : 1=4 1 i ˛ .´/ 1 6i 6i 1 1=4 .´/ ˛ n1=6 0 0 Similar to (9.27), we get, as n ! 1, (9.32) Un .´/ D M.´/ I C ˛ .´/ 3=2 48n C O.n 2 / : 10 Parametrix at the Inner Turning Points We now consider small disks D.˛ 0 ; "/ and D.ˇ 0 ; "/ centered at the inner turning points. Denote DQ D D.˛ 0 ; "/ [ D.ˇ 0 ; "/. We will seek a local parametrix Un .´/ defined on DQ such that (10.1) Un .´/ is analytic on DQ n †S : (10.2) UnC .´/ D Un .´/jS .´/ for ´ 2 DQ \ †S : (10.3) Un .´/ D M.´/.I C O.n1 // Q uniformly for ´ 2 @D: We first construct the parametrix near ˛ 0 . Let (10.4) Q n .´/e Un .´/ D Q † i n´ 2 3 e n.g.´/ V .´/ l 2 2 /3 for ˙ Im ´ 0: Q n are Then the jumps for Q (10.5) jQQ .´/ D 0 1 1 0 ! 1 0 1 1 ! 1 1 0 1 ! 1 1 0 1 for ´ 2 .˛ 0 "; ˛ 0 /; ! for ´ 2 .˛ 0 ; ˛ 0 C "/; for ´ 2 .˛ 0 ; ˛ 0 C i"/; for ´ 2 .˛ 0 ; ˛ 0 i"/; where orientation is taken from left to right on horizontal contours, and down to up on vertical contours according to Figure 7.1 (for a calculation of the jumps see † EXACT SOLUTION OF THE SIX-VERTEX MODEL 819 appendix C in [6]). We now take (10.6) ! y2 .´/ y0 .´/ y20 .´/ y00 .´/ ! y2 .´/ y1 .´/ y20 .´/ y10 .´/ ! y1 .´/ y2 .´/ y10 .´/ y20 .´/ ! y1 .´/ y0 .´/ y10 .´/ y00 .´/ ˆ˛ 0 .´/ D for arg ´ 2 0; 2 ; for arg ´ 2 2; ; for arg ´ 2 ; 2 ; for arg ´ 2 2 ; 0 : Q n , but for jumps emanating from the Then ˆ˛ 0 .´/ solves a RHP similar to that of Q origin rather than from ˛ 0 . Notice that, by (2.18), for t 2 Œ˛; ˛ 0 , as t ! ˛ 0 , (10.7) .t/ D 1 C.˛ 0 t/1=2 C O..˛ 0 t/3=2 /; 2 C > 0: It follows that, as ´ ! ˛ 0 for ´ 2 Œ˛; ˛ 0 , Z ˛0 1 (10.8) .t/ dt D C0 .˛ 0 ´/3=2 C O..˛ 0 ´/5=2 /; 2 ´ Thus, 3 ˛ 0 .´/ D 2 (10.9) ˛0 Z ´ 2 C0 D C: 3 2=3 1 .t/ dt 2 ˛0, is analytic at and so extends to a conformal map from D.˛ 0 ; "/ onto a convex neighborhood of the origin. Furthermore, ˛ 0 .˛ (10.10) 0 / D 0; 0 0 ˛ 0 .˛ / > 0I "; ˛ 0 / and real positive on .˛ 0 ; ˛ 0 C "/. consequently, ˛ 0 is real negative on .˛ 0 Again, we can slightly deform the vertical pieces of the contour †S close to ˛ 0 so that ˛ 0 fD.˛ (10.11) 0 ; "/ \ †S g D ."; "/ [ .i"; i"/: We now take Q n .´/ D E˛ 0 .´/ˆ˛ 0 .n2=3 Q n (10.12) ˛ 0 .´// where 0 E˛n .´/ D M.´/e ˙ (10.13) 1 0 L˛n .´/ D p 2 i n 2 3 n1=6 Q n .´/1 L for ˙ Im ´ 0; ! 1=4 .´/ 0 1 i ˛0 ; 1 i 0 n1=6 1=4 0 .´/ ˛ 820 P. M. BLEHER AND K. LIECHTY that is positive on .˛ 0 ; ˛ 0 C "/ and has a cut on 1=4 and we take the branch of ˛ 0 .˛ 0 "; ˛ 0 /. Un then becomes (10.14) Un .´/ D M.´/e ˙ e i n 2 3 i n´ 2 3 e 0 L˛n .´/1 ˆ˛ 0 .n2=3 l n.g.´/ V .´/ 2 2 /3 ˛ 0 .´// for ˙ Im ´ 0: The function ˆ˛ 0 .n2=3 ˛ 0 .´// has the jumps jS , and we claim that the prefactor 0 E˛n is analytic in D.˛ 0 ; "/, and thus does not change these jumps. This can be seen, as (10.15) MC .´/e i n 2 3 D M .´/e thus the jump for the function M.´/e ˙ (10.16) e i n 2 3 jM e i n 2 3 D (10.17) i n 2 3 e i n 2 3 e i n 2 3 e i n 2 3 jM e i n 2 3 D e i n 2 3 jM e i n 2 3 I is ! 0 1 i n 3 e 2 1 0 e i n 3 e † or, equivalently, i n 2 3 i n 2 3 ! 0 1 1 0 ! 1 0 0 1 for ´ 2 .˛ 0 "; ˛ 0 /; for ´ 2 .˛ 0 ; ˛ 0 C "/; for ´ 2 .˛ 0 "; ˛ 0 /; for ´ 2 .˛ 0 ; ˛ 0 C "/; 0 which is exactly the same as the jump conditions for L˛n . Thus 0 E˛n .´/ D M.´/e ˙ i n 2 3 0 L˛n .´/1 0 has no jumps in D.˛ 0 ; "/. The only other possible singularity for E˛n is at ˛ 0 , and 0 this singularity is at most a fourth-root singularity and thus removable. Thus, E˛n Q n has the prescribed jumps. is analytic in D.˛ 0 ; "/, and Q We are left to check that Un satisfies the matching condition (10.3). The large-n asymptotics of ˆ˛ 0 .n2=3 ˛ 0 .´// are given in the different regions of analyticity as follows: (10.18) ˆ˛ 0 .n2=3 ˛ 0 .´// 1 1 1 D p n 6 3 ˛ 0 .´/ 4 3 2 3=2 5i i 1 ˛ 0 .´/ ˙ 7i i 1 48n 2 e 3n 3=2 3 ˛ 0 .´/ for ˙ Im ´ > 0; 5 2 C O.n / 7 EXACT SOLUTION OF THE SIX-VERTEX MODEL 821 where we always take the principal branch of ˛ 0 .´/3=2 . As such, two-valued for x 2 .˛ 0 "; ˛/, so that Z ˛0 1 2 3=2 D i .t/ dt ˛ 0 .x/ 3 2 x ˙ (10.19) Z ˛0 i 0 .t/dt: D .˛ x/ ˙ i 2 x ˛ 0 .´/ 3=2 is From (2.30) and (2.33), we have that Z 2gC .x/ V .x/ D l C 2 i (10.20) 2g .x/ V .x/ D l 2 i ˇ .t/dt; x Z ˇ .t/dt; x for x 2 .˛ 0 "; ˛ 0 /. These equations imply that .2g˙ .x/ V .x// .2g˙ .˛ 0 / V .˛ 0 // D ˙2 i (10.21) Z ˛0 .t/dt: x We can therefore write (10.19) as 2 i 3=2 D .˛ 0 x/ ˛ 0 .x/ 3 2 ˙ (10.22) 1 C .2g˙ .x/ V .x// .2g˙ .˛ 0 / V .˛ 0 // : 2 We can extend these equations into the upper and lower half-plane, respectively, obtaining (10.23) 2 3 ˛ 0 .´/ 3=2 D 1 i 0 .˛ ´/ C .2g.´/ V .´// .2g˙ .˛ 0 / V .˛ 0 // 2 2 for ˙ Im ´ > 0: Using (10.20) at x D ˛ 0 , we can write 2 3 (10.24) ˛ 0 .´/ 3=2 i 0 V .´/ l .˛ ´/ C g.´/ 2 2 2 Z ˇ .t/dt for ˙ Im ´ > 0 i D ˛0 or, equivalently, (10.25) 2 3 ˛ 0 .´/ 3=2 D g.´/ V .´/ l i´ i.n / ˙ 2 2 2 2n for ˙ Im ´ > 0: 822 P. M. BLEHER AND K. LIECHTY Plugging (10.18) and (10.24) into (10.14) gives Un .´/ D M.´/e ˙ 1 1 1 0 L˛n .´/1 p n 6 3 ˛0 .´/ 4 3 2 3=2 5i 5 1 ˛ 0 .´/ 2 C O.n / ˙ 7i 7 1 48n i n 2 i i l 3 e n.g.´/ 2 e (10.26) V .´/ 2 /3 e i n 2 i n´ 3 ˙ i2 3 ˙ i n´ 2 3 2 3 e e e n.g.´/ V 2.´/ 2l /3 1 1 1 0 L˛n .´/1 p n 6 3 ˛0 .´/ 4 3 2 3=2 i n 5 5i 1 i ˛ 0 .´/ 2 C O.n / e 2 3 C 7 7i 1 i 48n 3=2 i n n 1 6i ˛ 0 .´/ ˙ i 2 3 3 e 2 C O.n / D M.´/ I C e 2 6i 1 48n 3=2 1 6i e ˙i n ˛ 0 .´/ 2 C O.n D M.´/ I C / 6i e i n 1 48n for ˙ Im ´ > 0: D M.´/e ˙ i n 2 3 We can make a similar construction near ˇ 0 (see [6]). Let 2=3 Z 3 ´ 1 (10.27) .t/dt : ˇ 0 .´/ D 2 ˇ 0 2 This function is analytic in D.ˇ 0 ; "/ and has negative derivative at ˇ 0 ; thus Im ´ and Im ˇ 0 .´/ have opposite signs for ´ 2 D.ˇ 0 ; "/. Also, let 1 0 0 (10.28) ˆˇ 0 .´/ D ˆ˛ .´/ : 0 1 Then we can take for ´ 2 D.ˇ 0 ; "/, (10.29) Un .´/ D M.´/e ˙ e i n 2 3 i n´ 2 3 e 0 Lˇn .´/1 ˆˇ 0 .n2=3 l n.g.´/ V .´/ 2 2 /3 where (10.30) 0 Lˇn .´/ 1 D p 2 n1=6 1=4 .´/ ˇ0 0 ˇ 0 .´// for ˙ Im ´ > 0; ! 1 i : 1=4 1 i 0 .´/ 0 n1=6 Similar to (10.26), we obtain 3=2 1 ˇ 0 .´/ Un .´/ D M.´/ I C i n 6ie (10.31) 48n for ˙ Im ´ > 0: ˇ 6ie ˙i n 1 C O.n 2 / EXACT SOLUTION OF THE SIX-VERTEX MODEL 823 F IGURE 11.1. The contour †X . 11 The Third and Final Transformation of the RHP We now consider the contour †X , consisting of the circles @D.˛; "/, @D.˛ 0 ; "/, @D.ˇ 0 ; "/, and @D.ˇ; "/, all oriented counterclockwise, together with the parts of †S n .Œ˛; ˛ 0 [ Œˇ 0 ; ˇ/ that lie outside of the disks D.˛; "/, D.˛ 0 ; "/, D.ˇ 0 ; "/, and D.ˇ; "/; see Figure 11.1. We let (11.1) 8 Sn .´/M.´/1 ˆ ˆ ˆ < for ´ outside disks D.˛; "/; D.˛ 0 ; "/; D.ˇ 0 ; "/; D.ˇ; "/; Xn .´/ D 1 ˆ ˆ Sn .´/Un .´/ :̂ for ´ inside disks D.˛; "/; D.˛ 0 ; "/; D.ˇ 0 ; "/; D.ˇ; "/: Then Xn .´/ solves the following RHP: (1) Xn .´/ is analytic on C n †X . (2) Xn .´/ has the jump properties XnC .x/ D Xn .´/jX .´/ (11.2) where (11.3) ( jX .´/ D M.´/Un .´/1 M.´/jS M.´/1 for ´ on the circles; otherwise: (3) As ´ ! 1, X1 X2 C 2 C : ´ ´ Additionally, we have that jX .´/ is uniformly close to the identity in the following sense: ( I C O.n1 / uniformly on the circles, (11.5) jX .´/ D C.´/n / on the rest of †X ; I C O.e Xn .´/ I C (11.4) where C.´/ is a positive, continuous function satisfying (6.7). If we set jX0 .´/ D jX .´/ I; (11.6) then (11.5) becomes (11.7) jX0 .´/ D ( O.n1 / O.e C.´/n / uniformly on the circles, on the rest of †X : The solution to the RHP for Xn is based on the following lemma: 824 P. M. BLEHER AND K. LIECHTY L EMMA 11.1 Suppose v.´/ is a function on †X solving the equation Z v.u/jX0 .u/ 1 (11.8) v.´/ D I du for ´ 2 †X 2 i ´ u †X where ´ means the value of the integral on the minus side of †X . Then Z v.u/jX0 .u/ 1 du for ´ 2 C n †X (11.9) Xn .´/ D I 2 i †X ´ u solves the RHP for Xn . The proof of this lemma is immediate from the jump property of the Cauchy transform. By assumption Xn .´/ D v.´/; (11.10) and the additive jump of the Cauchy transform gives (11.11) XnC .´/ Xn .´/ D v.´/jX0 .´/ D Xn .´/jX0 .´/I thus XnC .´/ D Xn .´/jX .´/. Asymptotics at infinity are given by (11.9). The solution to equation (11.8) is given by a series of perturbation theory. Namely, the solution is v.´/ D I C (11.12) 1 X vk .´/ kD1 where (11.13) vk .´/ D 1 2 i Z vk1 .u/jX0 .u/ du; ´u v0 .´/ D I: †X This function clearly solves (11.8) provided the series converges, which it does for sufficiently large n. Indeed, by (11.5), k 1 C for some constant C > 0I (11.14) jvk .´/j n 1 C j´j thus the series (11.12) is dominated by a convergent geometric series and thus converges absolutely. This in turn gives (11.15) Xn .´/ D I C 1 X Xn;k .´/ kD1 where (11.16) 1 Xn;k .´/ D 2 i Z †X vk1 .u/jX0 .u/ du: ´u EXACT SOLUTION OF THE SIX-VERTEX MODEL We will need to compute (11.17) 1 Xn;1 .´/ D 2 i Z 825 jX0 .u/ du: ´u †X 12 Evaluation of X1 We are interested in the matrix X1 , which gives the ´1 -term of Xn .´/ at infinity; see (11.4). By (11.9), Z 1 v.u/jX0 .u/duI (12.1) X1 D 2 i †X hence by (11.12) and (11.14), (12.2) X1 D 1 2 i Z jX0 .u/du C O.n2 /: †X We would like to evaluate the integral 1 2 i (12.3) Z jX0 .u/du; †X with an error of the order of n2 . By (11.7), it is enough to evaluate this integral over the circles @D.˛; "/, @D.˛ 0 ; "/, @D.ˇ 0 ; "/, and @D.ˇ; "/. It can be shown (see [6]) that the matrix-valued function jX0 .´/ is analytic in the punctured disks; hence (12.4) X1 D Res C Res0 C Res C Res jX0 .´/ C O.n2 /: ´D˛ ´D˛ ´Dˇ 0 ´Dˇ In particular, we are interested in the [12] entry of this matrix. Calculation of these residues gives that c.n/ C O.n2 /; n where c.n/ is an explicit quasi-periodic function of n; see [6]. (12.5) ŒX1 12 D 13 Large-n Asymptotic Formula for hn We evaluate the large-n asymptotic behavior of hnn and then we use formula (1.28). By (4.7), hnn D ŒP1 12 , and by (5.16), n i (13.1) ŒP1 12 D ŒR1 12 I hence (13.2) hnn n i : D ŒR1 12 826 P. M. BLEHER AND K. LIECHTY Furthermore, from (6.4) we obtain that n i hnn D e nl ŒT1 12 ; (13.3) and from (7.2) that hnn D e ŒS1 12 nl (13.4) n i : It follows from (11.1) that S 1 D M1 C X 1 : (13.5) By (8.33), #10 .0/ .1 C / iA#4 ..n C 1/!/ ; !D ; AD : #4 .n!/ 2 2#1 .!/ Combining this with (12.5) gives iA# .n C 1/! c.n/ n i 4 nl 2 C C O.n / : (13.7) hnn D e #4 .n!/ n By (2.36), (13.6) ŒM1 12 D e l=2 D (13.8) hence hnn (13.9) #10 .0/ A D I 2e#1 .!/ e 2n n i A #4 ..n C 1/!/ c.n/ 2 C C O.n / D iA e #4 .n!/ n 2nC1 n A #4 .n C 1/! c1 .n/ 1C C O.n2 / D 2n e #4 .n!/ n where c.n/#4 .n!/ : iA#4 ..n C 1/!/ From (1.28) and the Stirling formula we obtain that 2n 1 hn n2n hnn e hnn 2 1 C O.n / I (13.11) D D .nŠ/2 .nŠ/2 .2 /2n 2 2 n 6n hence by (13.9), 2n e 1 n A2nC1 #4 .n C 1/! hn D .nŠ/2 2 2 n e 2n #4 .n!/ 1 c1 .n/ 2 (13.12) C O.n / 1C n 6n c2 .n/ 2nC1 #4 .n C 1/! 2 1C C O.n / ; DG #4 .n!/ n (13.10) c1 .n/ D EXACT SOLUTION OF THE SIX-VERTEX MODEL 827 where #10 .0/ A D ; 2 4 #1 .!/ Observe that c1 .n/ has the form (13.13) 1 c2 .n/ D c1 .n/ : 6 GD c1 .n/ D f .n!; !/; (13.14) where f .x; !/ is a real analytic function, periodic with respect to both x and !, of periods and 2 , respectively. Remarkably, it can be shown using classical theta function identities (see, e.g., [29]), that f .x; !/ does not depend on either x or !. In fact (see [6]), 1 (13.15) c1 .n/ I 6 thus c2 .n/ 0: (13.16) We can summarize these results in the following proposition: P ROPOSITION 13.1 As n ! 1, (13.17) .n C 1/! # hn 4 .1 C O.n2 //; D G 2nC1 .nŠ/2 #4 .n!/ where GD (13.18) #10 .0/ : 4 #1 .!/ 14 Large-n Asymptotics of Zn By substituting (13.17) into (1.23) we obtain that (14.1) n1 Y hk n 2 D 2n Qn1 2 .kŠ/2 kD0 .kŠ/ kD0 n1 Y n2 2kC1 #4 ..k C 1/!/ 2 G .1 C O.k // D 2 h0 #4 .k!/ kD1 2 D C #4 .n!/.2G/n .1 C O.n1 //; where C > 0 does not depend on n. Thus, by (1.14), 2 (14.2) Œsinh. t/ sinh. C t/n n 2 D C #4 .n!/F n .1 C O.n1 //; Zn D Qn1 2 . kD0 kŠ/ where (14.3) F D 2G sinh. t/ sinh. C t/ D Theorem 1.1 is proved. sinh. t/ sinh. C t/#10 .0/ : 2 #1 .!/ 828 P. M. BLEHER AND K. LIECHTY Acknowledgment. The first author is supported in part by National Science Foundation (NSF) Grant DMS-0652005. Both authors would like to thank the Centre de Recherches Mathématiques at l’Université de Montréal, where much of this work was performed, for its hospitality during their visit in fall 2008. Bibliography [1] Allison, D.; Reshetikhin, N. Numerical study of the 6-vertex model with domain wall boundary conditions. Ann. Inst. Fourier (Grenoble) 55 (2005), no. 6, 1847–1869. [2] Baik, J.; Kriecherbauer, T.; McLaughlin, K. T.-R.; Miller, P. D. Discrete orthogonal polynomials. Asymptotics and applications. Annals of Mathematics Studies, 164. Princeton University Press, Princeton, N.J., 2007. [3] Batchelor, M. T.; Baxter, R. J.; O’Rourke, M. J.; Yung, C. M. Exact solution and interfacial tension of the six-vertex model with antiperiodic boundary conditions. J. Phys. A 28 (1995), no. 10, 2759–2770. [4] Baxter, R. J. Exactly solved models in statistical mechanics. Reprint of the 1982 original. Academic, London, 1989. [5] Bleher, P. M.; Fokin, V. V. Exact solution of the six-vertex model with domain wall boundary conditions. Disordered phase. Comm. Math. Phys. 268 (2006), no. 1, 223–284. [6] Bleher, P. M.; Liechty, K. Exact solution of the six-vertex model with domain wall boundary condition. Antiferroelectric phase. arXiv:0904.3088v1, 2009. [7] Bleher, P. M.; Liechty, K. Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases. J. Stat. Phys. 134 (2009), no. 3, 463–485. [8] Bleher, P. M.; Liechty, K. Exact solution of the six-vertex model with domain wall boundary conditions. Ferroelectric phase. Comm. Math. Phys. 286 (2009), no. 2, 777–801. [9] Borodin, A.; Boyarchenko, D. Distribution of the first particle in discrete orthogonal polynomial ensembles. Comm. Math. Phys. 234 (2003), no. 2, 287–338. [10] Brascamp, H. J.; Kunz, H.; Wu, F. Y. Some rigorous results for the vertex model in statistical mechanics. J. Math. Phys. 14 (1973), no. 12, 1927–1932. [11] Bressoud, D. M. Proofs and confirmations. The story of the alternating sign matrix conjecture. MAA Spectrum. Mathematical Association of America, Washington, D.C.; Cambridge University Press, Cambridge, 1999. [12] Deift, P.; Kriecherbauer, T.; McLaughlin, K. T-R.; Venakides, S.; Zhou, X. Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52 (1999), no. 11, 1335–1425. [13] Dragnev, P. D.; Saff, E. B. Constrained energy problems with applications to orthogonal polynomials of a discrete variable. J. Anal. Math. 72 (1997), 223–259. [14] Ferrari, P. L.; Spohn, H. Domino tilings and the six-vertex model at its free-fermion point. J. Phys. A 39 (2006), no. 33, 10297–10306. [15] Izergin, A. G. Partition function of a six-vertex model in a finite volume. Dokl. Akad. Nauk SSSR 297 (1987), no. 2, 331–333; translation in Soviet Phys. Dokl. 32 (1987), no. 11, 878–879. [16] Izergin, A. G.; Coker, D. A.; Korepin, V. E. Determinant formula for the six-vertex model. J. Phys. A 25 (1992), no. 16, 4315–4334. [17] Korepin, V. E. Calculation of norms of Bethe wave functions. Comm. Math. Phys. 86 (1982), 391–418. [18] Korepin, V.; Zinn-Justin, P. Thermodynamic limit of the six-vertex model with domain wall with boundary conditions. J. Phys. A 33 (2000), no. 40, 7053–7066. EXACT SOLUTION OF THE SIX-VERTEX MODEL 829 [19] Kuijlaars, A. B. J. On the finite-gap ansatz in the continuum limit of the Toda lattice. Duke Math. J. 104 (2000), no. 3, 433–462. [20] Kuperberg, G. Another proof of the alternating-sign matrix conjecture. Internat. Math. Res. Not. 1996 (1996), no. 3, 139–150. [21] Lieb, E. H. Exact solution of the problem of the entropy of two-dimensional ice. Phys. Rev. Lett. 18 (1967), no. 17, 692–694. [22] Lieb, E. H. Exact solution of the two-dimensional Slater KDP model of an antiferroelectric. Phys. Rev. Lett. 18 (1967), 1046–1048. [23] Lieb, E. H. Exact solution of the two-dimensional Slater KDP model of a ferroelectric. Phys. Rev. Lett. 19 (1967), no. 3, 108–110. [24] Lieb, E. H. Residual entropy of square ice. Phys. Rev. 162 (1967), no. 1, 162–172. [25] Lieb, E. H.; Wu, F. Y. Two dimensional ferroelectric models. Phase transitions and critical phenomena, vol. 1, 331–490. Academic, London, 1972. [26] Saff, E. B.; Totik, V. Logarithmic potentials with external fields. Grundlehren der Mathematischen Wissenschaften, 316. Springer, New York, 1997. [27] Sogo, K. Toda molecule equation and quotient-difference method. J. Phys. Soc. Japan 62 (1993), no. 4, 1081–1084. [28] Sutherland, B. Exact solution of a two-dimensional model for hydrogen-bonded crystals. Phys. Rev. Lett. 19 (1967), no. 3, 103–104. [29] Whittaker, E. T.; Watson, G. N. A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions. Reprint of the 4th (1927) ed. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. [30] Wu, F. Y.; Lin, K. Y. Staggered ice-rule vertex model. The Pfaffian solution. Phys. Rev. B 12 (1975), no. 1, 419–428. [31] Zinn-Justin, P. Six-vertex model with domain wall boundary conditions and one-matrix model. Phys. Rev. E (3) 62 (2000), no. 3, part A, 3411–3418. PAVEL B LEHER Indiana University-Purdue University Indianapolis Department of Mathematical Sciences 402 N. Blackford Street Indianapolis, IN 46202 E-mail: [email protected] K ARL L IECHTY Indiana University-Purdue University Indianapolis Department of Mathematical Sciences 402 N. Blackford Street Indianapolis, IN 46202 E-mail: kliechty@ math.iupui.edu Received May 2009.
© Copyright 2025 Paperzz