3.3DifferenceEqua/onsforDiscrete-TimeSystems ADiscrete-/mesystemcanbemodeledwithdifferenceequa3ons involvingcurrent,past,orfuturesamplesofinputandoutputsignals Example3.3Moving-averagefilter Alength-Nmovingaveragefilterisasimplesystemthatproduces anoutputequaltothearithme=caverageofthemostrecentN samplesoftheinputsignal. 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.3Moving-averagefilter 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.3Moving-averagefilter 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.4Length-2moving-averagefilter 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.4Length-2moving-averagefilter 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.6Exponen=alsmoother 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.6Exponen=alsmoother 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.7Loanpayments Expresstheactoftakingabankloananpayingitbackover=measa discrete-=mesystemproblemwithmonthlypaymentsrepresen=ngthe Inputsignalandmonthlybalancerepresen=ngtheoutputsignal. y[n]=(1+c)y[n-1]+x[n] “c”isthemonthlyinterestrate 3.3DifferenceEqua/onsforDiscrete-TimeSystems Example3.7Loanpayments Expresstheactoftakingabankloananpayingitbackover=measa discrete-=mesystemproblemwithmonthlypaymentsrepresen=ngthe Inputsignalandmonthlybalancerepresen=ngtheoutputsignal. y[n]=(1+c)y[n-1]+x[n] “c”isthemonthlyinterestrate Wecanfindoutthemonthlypaymentx[n]bysolvingthedifferenceequa=on 3.4Constant-CoefficientLinearDifferenceEqua/ons Constant-coefficientdifferenceequa3on N M ∑ ak y[n − k] = ∑ bk x[n − k] k=0 k=0 Ini/alcondi/ons: y[n0-1],y[n0-2],….y[n0-N] Itistypical,butnotrequired,tohaven0=0. 3.4Constant-CoefficientLinearDifferenceEqua/ons Itera3velysolvingdifferenceequa3ons. Considerthedifferenceequa=onfortheexponen=alsmootherofEx.3.6 y[n]=(1-α)y[n-1]+αx[n] ² Giventheini=alvaluey[-1]oftheoutputsignal,y[0]isfoundby y[0]=(1-α)y[-1]+αx[0] ² Knowingy[0],thenextoutputsampley[1]isfoundby y[1]=(1-α)y[0]+αx[1] ² Knowingy[1],thenextoutputsampley[2]isfoundby y[2]=(1-α)y[1]+αx[2] 3.5SolvingDifferenceEqua/ons N M ∑ ak y[n − k] = ∑ bk x[n − k] k=0 k=0 Ini=alcondi=ons: y[n0 − N ] y[n0 −1], y[n0 − 2], ,….., Generalsolu=on: y[n] = yh [n]+ y p [n] ² yn([n]:isthehomogeneoussolu=onofthedifferen=alequa=on naturalresponse ² yp[n]:isthepar3cularsolu3onofthedifferen=alequa=on ² y[n]=yh[n]+yp[n]istheforcedsolu3onofthedifferen=alequa=on forcedresponse 3.5SolvingDifferenceEqua/ons Example3.11Naturalresponseofexponen=alsmoother Determinethenaturalresponseoftheexponen=alsmootherdefined as: y[n] = (1− α ) y[n −1]+ α x[n] Ify[-1]=2 3.5.1Findingthenaturalresponseofadiscrete/mesystem Generalhomogeneousdifferen=alequa=on: N ∑ ak y[n − k] = 0 k=0 Characteris/cequa/on: N ∑ ak z −k = 0 k=0 Toobtainthecharacteris=cequa=on,subs=tute: y[n − k] → z −k 3.5.1Findingthenaturalresponseofadiscrete/mesystem Writethecharacteris=cequa=oninopenform: a0 + a1z −1 + .... + a N −1z −N +1 + a N z −N = 0 Mul=plybothsidesbyzNtoobtain a0 z N + a1z N −1 + .... + a N −1z1 + a N = 0 Infactoredform: a0 (a − z1 )(a − z2 )...(a − z N ) = 0 Homogeneoussolu=on(assumingrootsaredis=nct): N n yh [n] = c1z1n + c2 z2n + ... + cN z N = ∑ ck zkn k=1 Whereunknowncoefficientsc1,c2,….,cNaredeterminedbythe ini=alcondi=on,thetermsarecalledthemodesofthesystem zin 3.5.1Findingthenaturalresponseofadiscrete/mesystem Example3.12Naturalresponseofsecond-ordersystem Asecond-ordersystemisdescribedbythedifferenceequa=on: 5 1 y[n]− y[n −1]+ y[n − 2] = 0 6 6 Determinethenaturalresponseofthissystemforn>=0subjectto ini=alcondi=on: y[-1]=19,andy[-2]=53 3.5.2Findingtheforcedresponseofadiscrete/mesystem Choosingapar3cularsolu3onforvariousdiscrete-=meinputsignals Thecoefficientofthepar3cularsolu3onaredeterminedfromthe Differenceequa=onbyassumingallini=alcondi=onsareequaltozero. 3.5.2Findingtheforcedresponseofadiscrete/mesystem Writethehomogeneousdifferenceequa=on Solvehomogeneousdifference equa=onwithundeterminedcoefficient Findtheformofthepar=cularsolu=on Findthecoefficientsofthepar=cularsolu=on Addthehomogeneousandpar=cularsolu=on Togethertoobtainthetotalsolu=on 3.5.2Findingtheforcedresponseofadiscrete/mesystem Example3.14Forcedresponseofexponen=alsmoother Determinetheforcedresponseoftheexponen=alsmootherdefined as: y[n] = (1− α ) y[n −1]+ α x[n] Theinputsignalisaunit-stepfunc=on,andy[-1]=2.5
© Copyright 2026 Paperzz