Semi-hyperbolicity and hyperbolicity Marcin Mazur Jagiellonian University Joint work with J. Tabor and P. Kościelniak Fifth Symposium on Nonlinear Analysis Toruń 2007 Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 1 / 10 Introduction Motivation Let M be a C 1 -manifold and f : M → M a diffeomorphism. We are given an invariant subset K of M (i.e. f (K ) = K ). Field of interest: The behaviour of f in (the neighbourhood of) K . A lot of information follows from the fact that K is hyperbolic for f . Hyperbolicity: guarantees stability, shadowing, expansivity, symbolic dynamics, etc.; hard to verify. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 2 / 10 Introduction Motivation Let M be a C 1 -manifold and f : M → M a diffeomorphism. We are given an invariant subset K of M (i.e. f (K ) = K ). Field of interest: The behaviour of f in (the neighbourhood of) K . A lot of information follows from the fact that K is hyperbolic for f . Hyperbolicity: guarantees stability, shadowing, expansivity, symbolic dynamics, etc.; hard to verify. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 2 / 10 Introduction Motivation Let M be a C 1 -manifold and f : M → M a diffeomorphism. We are given an invariant subset K of M (i.e. f (K ) = K ). Field of interest: The behaviour of f in (the neighbourhood of) K . A lot of information follows from the fact that K is hyperbolic for f . Hyperbolicity: guarantees stability, shadowing, expansivity, symbolic dynamics, etc.; hard to verify. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 2 / 10 Introduction Idea of hyperbolicity By Tx M we denote the tangent space at the point x. We consider a compact invariant set K ⊂ M and the collection of linear tangent maps Dx f : Tx M → Tf (x) M for x ∈ K . Roughly speaking, we say that K is hyperbolic if the linear operators Dorb(x) f (x ∈ K ) are all hyperbolic ”with the same hyperbolicity constants”. L∞ (orb(x)) 3 (vn ) .. .. .. . . . Tf (x) M 3 v1 Tx M 3 v0 Tf −1 (x) M 3 v−1 .. .. .. . . . 7→ .. . Dorb(x) f (vn ) .. . 7→ Df (x) f v1 7 → Dx f v 0 7 → Df −1 (x) f v−1 .. .. . . ∈ L∞ (orb(x)) .. .. . . ∈ ∈ ∈ .. . Tf 2 (x) M Tf (x) M Tx M .. . We therefore go to the linear case −→ not so obvious! Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 3 / 10 Introduction Idea of hyperbolicity By Tx M we denote the tangent space at the point x. We consider a compact invariant set K ⊂ M and the collection of linear tangent maps Dx f : Tx M → Tf (x) M for x ∈ K . Roughly speaking, we say that K is hyperbolic if the linear operators Dorb(x) f (x ∈ K ) are all hyperbolic ”with the same hyperbolicity constants”. L∞ (orb(x)) 3 (vn ) .. .. .. . . . Tf (x) M 3 v1 Tx M 3 v0 Tf −1 (x) M 3 v−1 .. .. .. . . . 7→ .. . Dorb(x) f (vn ) .. . 7→ Df (x) f v1 7 → Dx f v 0 7 → Df −1 (x) f v−1 .. .. . . ∈ L∞ (orb(x)) .. .. . . ∈ ∈ ∈ .. . Tf 2 (x) M Tf (x) M Tx M .. . We therefore go to the linear case −→ not so obvious! Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 3 / 10 Introduction Idea of hyperbolicity By Tx M we denote the tangent space at the point x. We consider a compact invariant set K ⊂ M and the collection of linear tangent maps Dx f : Tx M → Tf (x) M for x ∈ K . Roughly speaking, we say that K is hyperbolic if the linear operators Dorb(x) f (x ∈ K ) are all hyperbolic ”with the same hyperbolicity constants”. L∞ (orb(x)) 3 (vn ) .. .. .. . . . Tf (x) M 3 v1 Tx M 3 v0 Tf −1 (x) M 3 v−1 .. .. .. . . . 7→ .. . Dorb(x) f (vn ) .. . 7→ Df (x) f v1 7 → Dx f v 0 7 → Df −1 (x) f v−1 .. .. . . ∈ L∞ (orb(x)) .. .. . . ∈ ∈ ∈ .. . Tf 2 (x) M Tf (x) M Tx M .. . We therefore go to the linear case −→ not so obvious! Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 3 / 10 Introduction Idea of hyperbolicity By Tx M we denote the tangent space at the point x. We consider a compact invariant set K ⊂ M and the collection of linear tangent maps Dx f : Tx M → Tf (x) M for x ∈ K . Roughly speaking, we say that K is hyperbolic if the linear operators Dorb(x) f (x ∈ K ) are all hyperbolic ”with the same hyperbolicity constants”. L∞ (orb(x)) 3 (vn ) .. .. .. . . . Tf (x) M 3 v1 Tx M 3 v0 Tf −1 (x) M 3 v−1 .. .. .. . . . 7→ .. . Dorb(x) f (vn ) .. . 7→ Df (x) f v1 7 → Dx f v 0 7 → Df −1 (x) f v−1 .. .. . . ∈ L∞ (orb(x)) .. .. . . ∈ ∈ ∈ .. . Tf 2 (x) M Tf (x) M Tx M .. . We therefore go to the linear case −→ not so obvious! Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 3 / 10 Introduction Idea of hyperbolicity By Tx M we denote the tangent space at the point x. We consider a compact invariant set K ⊂ M and the collection of linear tangent maps Dx f : Tx M → Tf (x) M for x ∈ K . Roughly speaking, we say that K is hyperbolic if the linear operators Dorb(x) f (x ∈ K ) are all hyperbolic ”with the same hyperbolicity constants”. L∞ (orb(x)) 3 (vn ) .. .. .. . . . Tf (x) M 3 v1 Tx M 3 v0 Tf −1 (x) M 3 v−1 .. .. .. . . . 7→ .. . Dorb(x) f (vn ) .. . 7→ Df (x) f v1 7 → Dx f v 0 7 → Df −1 (x) f v−1 .. .. . . ∈ L∞ (orb(x)) .. .. . . ∈ ∈ ∈ .. . Tf 2 (x) M Tf (x) M Tx M .. . We therefore go to the linear case −→ not so obvious! Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 3 / 10 Introduction Definition of hyperbolicity – linear case Let X be a Banach space and A : X → X a linear operator. Definition We say that A is hyperbolic if there exist a splitting X = Xs ⊕ Xu and an equivalent norm k · k on X such that Xs , Xu are A-invariant; there exist λs < 1, λu > 1 such that kAxs k ¬ λs kxs k, kAxu k λu kxu k for xs ∈ Xs , xu ∈ Xu . Standard situation in R2 – saddle fixed point: λs 0 A= 0 λu λs < 1 < λ u Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 4 / 10 Introduction Definition of hyperbolicity – linear case Let X be a Banach space and A : X → X a linear operator. Definition We say that A is hyperbolic if there exist a splitting X = Xs ⊕ Xu and an equivalent norm k · k on X such that Xs , Xu are A-invariant; there exist λs < 1, λu > 1 such that kAxs k ¬ λs kxs k, kAxu k λu kxu k for xs ∈ Xs , xu ∈ Xu . Standard situation in R2 – saddle fixed point: λs 0 A= 0 λu λs < 1 < λ u Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 4 / 10 Quasi-hyperbolicity Hénon map Problem: Hyperbolicity of the Hénon attractor for various parameter values. Partial Answer: Theorem (Z. Arai) Hénon attractor is hyperbolic on its chain recurrent part for a large set of parameter values. Z. Arai, On Hyperbolic Plateaus of the Hénon Maps, to appear in Experimental Mathematics. A computer assisted proof −→ the use of quasi-hyperbolicity. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 5 / 10 Quasi-hyperbolicity Hénon map Problem: Hyperbolicity of the Hénon attractor for various parameter values. Partial Answer: Theorem (Z. Arai) Hénon attractor is hyperbolic on its chain recurrent part for a large set of parameter values. Z. Arai, On Hyperbolic Plateaus of the Hénon Maps, to appear in Experimental Mathematics. A computer assisted proof −→ the use of quasi-hyperbolicity. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 5 / 10 Quasi-hyperbolicity Hénon map Problem: Hyperbolicity of the Hénon attractor for various parameter values. Partial Answer: Theorem (Z. Arai) Hénon attractor is hyperbolic on its chain recurrent part for a large set of parameter values. Z. Arai, On Hyperbolic Plateaus of the Hénon Maps, to appear in Experimental Mathematics. A computer assisted proof −→ the use of quasi-hyperbolicity. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 5 / 10 Quasi-hyperbolicity Hénon map Problem: Hyperbolicity of the Hénon attractor for various parameter values. Partial Answer: Theorem (Z. Arai) Hénon attractor is hyperbolic on its chain recurrent part for a large set of parameter values. Z. Arai, On Hyperbolic Plateaus of the Hénon Maps, to appear in Experimental Mathematics. A computer assisted proof −→ the use of quasi-hyperbolicity. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 5 / 10 Semi-hyperbolicity How to deal with hyperbolicity? Standard situation in R2 : A= λs 0 0 λu λs < 1 < λ u EU ES Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 6 / 10 Semi-hyperbolicity How to deal with hyperbolicity? Standard situation in R2 : A= λs ? ? λu λs < 1 < λ u EU ES Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 6 / 10 Semi-hyperbolicity How to deal with hyperbolicity? Standard situation in R2 : A= λs µu µs λu λs < 1 < λu and (1 − λs )(λu − 1) > µs µu EU ES Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 6 / 10 Semi-hyperbolicity How to deal with hyperbolicity? One of possible solutions −→ semi-hyperbolicity: easier to check; allows lipschitzian perturbations. A.A. Al-Nayef, P.E. Kloeden, A.V. Pokrovskii, Semi-hyperbolic mappings, condensing operators, and neutral delay equations, J. Differential Equations 137 (1997), 320–339. P. Diamond, P.E. Kloeden, V. S. Kozyakin, A.V. Pokrovskii, Semi-hyperbolic mappings, in preparation. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 6 / 10 Semi-hyperbolicity Definition of hyperbolicity – linear case (reformulation) Let X be a Banach space, X = Xs ⊕ Xu . We consider a linear operator A : X → X and assume that Xs and Xu are A-invariant. Then in the matrix form we have Ass 0 A= . 0 Auu Definition We say that A is hyperbolic if λs < 1 < λ u ; 1 kAs k ¬ λs , kA−1 u k ¬ λu ; kAsu k ¬ µs , kAus k ¬ µu ; for some equivalent norm k · k in X . Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 7 / 10 Semi-hyperbolicity Definition of semi-hyperbolicity – linear case Let X be a Banach space, X = Xs ⊕ Xu . We consider a linear operator A : X → X and do not assume that Xs and Xu are A-invariant. Then in the matrix form we have Ass Asu A= . Aus Auu Definition We say that A is semi-hyperbolic if λs < 1 < λu and (1 − λs )(λu − 1) > µs µu ; 1 kAs k ¬ λs , kA−1 u k ¬ λu ; kAsu k ¬ µs , kAus k ¬ µu ; for some equivalent norm k · k in X . Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 7 / 10 Semi-hyperbolicity implies hyperbolicity Results Theorem If the operator A is semi-hyperbolic, then A is hyperbolic. M. Mazur, J. Tabor, K. Stolot, Semi-hyperbolicity implies hyperbolicity in the linear case, Proceedings of the Conference “Topological Methods in Differential Equations and Dynamical Systems” (Krakow-Przegorzaly, 1996), Univ. Iagell. Acta Math. 36 (1998), 121–126. Theorem Let K be a compact invariant semi-hyperbolic subset of M. Then K is hyperbolic. M. Mazur, J. Tabor, P. Kościelniak, Semi-hyperbolicity and hyperbolicity, to appear in Discrete Contin. Dynam. Syst. (IM UJ preprint 2007/04, http://www.im.uj.edu.pl/badania/preprinty/). Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 8 / 10 Semi-hyperbolicity implies hyperbolicity Results Theorem If the operator A is semi-hyperbolic, then A is hyperbolic. M. Mazur, J. Tabor, K. Stolot, Semi-hyperbolicity implies hyperbolicity in the linear case, Proceedings of the Conference “Topological Methods in Differential Equations and Dynamical Systems” (Krakow-Przegorzaly, 1996), Univ. Iagell. Acta Math. 36 (1998), 121–126. Theorem Let K be a compact invariant semi-hyperbolic subset of M. Then K is hyperbolic. M. Mazur, J. Tabor, P. Kościelniak, Semi-hyperbolicity and hyperbolicity, to appear in Discrete Contin. Dynam. Syst. (IM UJ preprint 2007/04, http://www.im.uj.edu.pl/badania/preprinty/). Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 8 / 10 Semi-hyperbolicity implies hyperbolicity Results Theorem If the operator A is semi-hyperbolic, then A is hyperbolic. M. Mazur, J. Tabor, K. Stolot, Semi-hyperbolicity implies hyperbolicity in the linear case, Proceedings of the Conference “Topological Methods in Differential Equations and Dynamical Systems” (Krakow-Przegorzaly, 1996), Univ. Iagell. Acta Math. 36 (1998), 121–126. Theorem Let K be a compact invariant semi-hyperbolic subset of M. Then K is hyperbolic. M. Mazur, J. Tabor, P. Kościelniak, Semi-hyperbolicity and hyperbolicity, to appear in Discrete Contin. Dynam. Syst. (IM UJ preprint 2007/04, http://www.im.uj.edu.pl/badania/preprinty/). Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 8 / 10 Semi-hyperbolicity implies hyperbolicity Results Theorem If the operator A is semi-hyperbolic, then A is hyperbolic. M. Mazur, J. Tabor, K. Stolot, Semi-hyperbolicity implies hyperbolicity in the linear case, Proceedings of the Conference “Topological Methods in Differential Equations and Dynamical Systems” (Krakow-Przegorzaly, 1996), Univ. Iagell. Acta Math. 36 (1998), 121–126. Theorem Let K be a compact invariant semi-hyperbolic subset of M. Then K is hyperbolic. M. Mazur, J. Tabor, P. Kościelniak, Semi-hyperbolicity and hyperbolicity, to appear in Discrete Contin. Dynam. Syst. (IM UJ preprint 2007/04, http://www.im.uj.edu.pl/badania/preprinty/). Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 8 / 10 Semi-hyperbolicity implies hyperbolicity Main results Theorem (MM, J. Tabor, P. Kościelniak) Let M be a Riemannian manifold, f : M → M be a C 1 -diffeomorphism and K be an invariant subset of M. Assume that K is (λs , λu , µs , µu ; h)-semi-hyperbolic. Let γs∗ , γu∗ be arbitrary reals such that √ √ (λu −λs )2 −4µs µu (λu −λs )2 −4µs µu λs +λu λs +λu ∗ ∗ − < 1 < γ < < γ + . s u 2 2 2 2 Let (λu −λs +µs +µu )h u −λs +µs +µu )h C ∗ = max{ (γ ∗(λ −λs )(λu −γ ∗ )−µs µu , (γ ∗ −λs )(λu −γ ∗ )−µs µu }. s Then the set K is s u u (γs∗ , γu∗ ; C ∗ )-hyperbolic. Theorem (MM, J. Tabor) Hénon attractor is hyperbolic for some parameter values. A computer assisted proof −→ the C++ program that verifies the semi-hyperbolicity conditions for the Hénon attractor. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 9 / 10 Semi-hyperbolicity implies hyperbolicity Main results Theorem (MM, J. Tabor, P. Kościelniak) Let M be a Riemannian manifold, f : M → M be a C 1 -diffeomorphism and K be an invariant subset of M. Assume that K is (λs , λu , µs , µu ; h)-semi-hyperbolic. Let γs∗ , γu∗ be arbitrary reals such that √ √ (λu −λs )2 −4µs µu (λu −λs )2 −4µs µu λs +λu λs +λu ∗ ∗ − < 1 < γ < < γ + . s u 2 2 2 2 Let (λu −λs +µs +µu )h u −λs +µs +µu )h C ∗ = max{ (γ ∗(λ −λs )(λu −γ ∗ )−µs µu , (γ ∗ −λs )(λu −γ ∗ )−µs µu }. s Then the set K is s u u (γs∗ , γu∗ ; C ∗ )-hyperbolic. Theorem (MM, J. Tabor) Hénon attractor is hyperbolic for some parameter values. A computer assisted proof −→ the C++ program that verifies the semi-hyperbolicity conditions for the Hénon attractor. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 9 / 10 Semi-hyperbolicity implies hyperbolicity Main results Theorem (MM, J. Tabor, P. Kościelniak) Let M be a Riemannian manifold, f : M → M be a C 1 -diffeomorphism and K be an invariant subset of M. Assume that K is (λs , λu , µs , µu ; h)-semi-hyperbolic. Let γs∗ , γu∗ be arbitrary reals such that √ √ (λu −λs )2 −4µs µu (λu −λs )2 −4µs µu λs +λu λs +λu ∗ ∗ − < 1 < γ < < γ + . s u 2 2 2 2 Let (λu −λs +µs +µu )h u −λs +µs +µu )h C ∗ = max{ (γ ∗(λ −λs )(λu −γ ∗ )−µs µu , (γ ∗ −λs )(λu −γ ∗ )−µs µu }. s Then the set K is s u u (γs∗ , γu∗ ; C ∗ )-hyperbolic. Theorem (MM, J. Tabor) Hénon attractor is hyperbolic for some parameter values. A computer assisted proof −→ the C++ program that verifies the semi-hyperbolicity conditions for the Hénon attractor. Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 9 / 10 Final remarks Work for (near) future improvement of the HENON-HYPER program: stricter estimations, interval parameters, etc.; development and implementation of the algorithm for systems in R3 ; looking for interesting examples. http://www.im.uj.edu.pl/MarcinMazur/comphyp/ Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 10 / 10 Final remarks Work for (near) future improvement of the HENON-HYPER program: stricter estimations, interval parameters, etc.; development and implementation of the algorithm for systems in R3 ; looking for interesting examples. http://www.im.uj.edu.pl/MarcinMazur/comphyp/ Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 10 / 10 Final remarks Work for (near) future improvement of the HENON-HYPER program: stricter estimations, interval parameters, etc.; development and implementation of the algorithm for systems in R3 ; looking for interesting examples. http://www.im.uj.edu.pl/MarcinMazur/comphyp/ Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 10 / 10 Final remarks Work for (near) future improvement of the HENON-HYPER program: stricter estimations, interval parameters, etc.; development and implementation of the algorithm for systems in R3 ; looking for interesting examples. http://www.im.uj.edu.pl/MarcinMazur/comphyp/ Marcin Mazur (Jagiellonian University) Semi-hyperbolicity and hyperbolicity SNA 2007 10 / 10
© Copyright 2025 Paperzz