Submodular Functions
in Graph Theory
Satoru Iwata
(University of Tokyo)
Base Polyhedra
R {x | V R}
V
x(Y ) x(v)
f ( ) 0
vY
Submodular Polyhedron
P( f ) {x | x R , Y V , x(Y ) f (Y )}
V
Base Polyhedron
B( f ) {x | x P( f ), x(V ) f (V )}
Tight Sets
x P( f )
Y : Tight
Y , Z V : Tight
)
x(Y ) f (Y )
Y Z , Y Z : Tight
x(Y ) x(Z ) x(Y Z ) x(Y Z )
f (Y ) f (Z ) f (Y Z ) f (Y Z )
Upper Base
x P( f )
)
h B( f ), h x.
D(x) : Unique Maximal Tight Set
v V \ D( x),
: min{ f (Y ) x(Y ) | v Y }
x : x v P( f ), v D(x).
f : 2 Z, x P( f ) Z
V
V
h B( f ) Z , h x
V
Graph Orientation
G (V , E ) : Graph
b : V Z
e(X ) : Number of Edges Incident to X .
Hakimi [1965]
X
e : Submodular
There exists an orientation G with
in-deg (v) b(v) for every v V .
b( X ) e( X ), X V ,
b(V ) e(V ).
b B(e)
Graph Orientation
1
2
e(X )
X
1
2
1
b(v)
V
E
e( X ) b(V X ) b(V )
Connected Detachment
G (V , E ) :
Connected Graph
b : V Z
Detachment
G (V , E )
Gˆ (W , E ) :
2
2
1
1
Split each vertex v V into b(v) vertices. Each edge
should be incident to some corresponding vertices.
Connected Detachment
Theorem (Nash-Williams [1985])
There exists a connected b-detachment of
G.
b( X ) e( X ) c( X ) 1, X V .
c(X ) : Number of Connected Components in G \ X .
Consider a
b -detachment.
Shrink each connected component in G \ X .
Number of vertices: b( X ) c( X ).
Number of edges: e(X ).
If the resulting graph is connected,
X
b( X ) c( X ) e( X ) 1.
Connected Detachment
Original Proof
Matroid Intersection (Nash-Williams [1985])
Alternative Proofs
Matroid Partition
Orientation
(Nash-Williams [1992])
(Nash-Williams [1995])
Connected Detachment
f ( X ) : e( X ) c( X ) 1 Submodular
f (V ) | E | 1,
b P( f )
f ( ) 0.
h B( f ) Z , h b.
V
h (v )
(v s )
y(v) :
h ( s ) 1 (v s )
y B(e)
e( R) y( R) h( R) 1 f ( R) 1
R V
s V
∃Orientation G with in-deg (v) y(v), v V .
R : Set of vertices reachable from s.
Connected Detachment
An orientation connected from a root s such that
in-deg (v) b(v) for every v s and in-deg(s) b(s) 1.
2
2
s
1
s
1
v
b(v)
Connected Detachment
Testing Feasibility
Submodular Function
Minimization
How to Find a Connected Detachment ?
O(b(V )3.5 m) Nagamochi [2006]
Application to Inferring Molecular Structure
O(nm)
Iwata & Jordan [2007]
Intersecting Submodular Functions
Intersecting:
X
Y
X Y , X \ Y , Y \ X .
f : 2V R
Intersecting Submodular:
f ( X ) f (Y ) f ( X Y ) f ( X Y )
X , Y V : Intersecting
Intersecting Submodular Functions
f : 2V R Intersecting Submodular
f ( ) 0
P( f ) {x | x RV , Y V , x(Y ) f (Y )}
Theorem (Lovász [1977])
There exists a fully submodular function
~ V
~
f : 2 R such that P( f ) P( f ).
k
~
f ( X ) min{ f ( X i ) | { X 1 ,..., X k } : partition of X }
i 1
Crossing Submodular Functions
Crossing:
X
Y
X Y , X Y V ,
X \ Y , Y \ X .
f : 2V R
Crossing Submodular:
f ( X ) f (Y ) f ( X Y ) f ( X Y )
X , Y V : Crossing
Crossing Submodular Functions
f : 2V R
Crossing Submodular
f ( ) 0
B( f ) {x | x RV , x(V ) f (V ), Y V , x(Y ) f (Y )}
Theorem (Frank [1982], Fujishige [1984])
There exists a fully submodular function
~ V
~
f : 2 R such that B( f ) B( f ),
provided that B( f ) is nonempty.
Bi-truncation Algorithm
Frank & Tardos [1988].
Graph Orientation
G (V , E ) : Graph
b : V Z
e(X ) : Number of Edges Incident to X .
b B( f )
There
exists an k-arc-connected orientation
G with in-deg(v) b(v) for every v V .
X
b( X
) e( X ) k , X V ,
b(V ) e(V ).
2
3
1
1
1
2
Graph Orientation
When is B( f ) nonempty?
Theorem (Nash-Williams [1960])
There exists an
k -arc-connected orientation of G.
G : 2k -edge-connected
x(v) : d (v) / 2 (v V )
x B( f )
Minimax Acyclic Orientation
G (V , E ) : Graph
Find an acyclic orientation that
minimizes the maximum in-degree
Submodular Flows
G (V , E ) : Directed Graph
Edmonds & Giles (1977)
S
c, c : A R Capacity
S
d : A R Cost
S
f : 2V R Crossing Submodular Function
f ( ) f (V ) 0
M inimize
d (a ) x(a )
aA
subject to
x( S ) x( S ) f ( S ), S V
c(a) x(a) c (a),
a A.
Submodular Flows
• Totally Dual Integral (TDI)
Edmonds & Giles (1977)
• Polynomial Algorithms Modulo SFMin
Grötschel, Lovász, Schrijver (1981)
Frank (1984), Cunningham & Frank (1985)
Frank & Tardos (1987)
Fujishige, Röck, Zimmermann (1988)
Iwata (1997),
Iwata, McCormick, Shigeno (2000,2003,2005)
Fleischer, Iwata, McCormick (2002)
Graph Orientation
G (V , A) : Reference Orientation
S
S
S
d : A R Reorientation Cost
M inimize
d (a) x(a)
aA
subject to
x( S ) x( S ) ( S ) k , S V ,
0 x(a) 1,
a A.
© Copyright 2026 Paperzz